Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Louzanne Coetzee breaks 16-year-old world record
2016-03-24

Description: Louzanne Coetzee kampioen Tags: Louzanne Coetzee kampioen

Louzanne Coetzee (left) running the 5 000 m at the Nedbank National Championships at the Free State Athletics stadium with her guide, Khotatso Mokone (right)
Photo: Celeste Klopper Photography

Whether it’s the 5 000 m or the 1 500 m, Louzanne Coetzee is breaking records in all her races. Fans of the University of the Free State (UFS) student were elated at her triumph with the 5 000 m T11 world record at the Nedbank National Championships for the Physically Disabled on Wednesday 23 March 2016.

The record, which has stood for 16 years, was shattered by Coetzee’s stellar 19:17.06 performance. Sigita Markeviciene’s long-standing mark of 20:05.81, set at the 2000 Paralympics in Sydney, was bettered by 48.75 seconds when Coetzee and her guide, Khotatso Mokone, sprinted hand in hand past the finish line. 

Coetzee’s coach is as elated as the world-class athlete’s fans over her officially becoming the first totally blind female to clock sub-20 minute in the 5 000 m. "I am proud and grateful. She earned it through and through. She worked hard for this,” said Rufus Botha.

The experience was a surreal one for Coetzee. “It was unreal but it is exciting to be the fastest in Africa and the world. I could not have done it without the support system that I have,” she said.

"I have seldom met a student with the character and humanity of Louzanne Coetzee; she represents the best of campus and country, and is a stunning example of what we canal  achieve despite the great challenges of the present," said Prof Jonathan Jansen, Vice-Chancellor and Rector of the UFS.

New African record holder

Two days before breaking the 5 000 m world record, Coetzee set a new African record in the 1 500 m. She lowered the mark from 5:27:21 to 5:18:44, which placed her at the number nine spot in the world.

On Friday 18 March 2016 Coetzee had broken her own South African record when she ran 5 000 m in less than 20 minutes at the Free State Championships. However, the race is not an official (International Paralympic Committee) meeting, and hence remains unofficial.

What’s next?


The gold medallist is currently preparing for the Athletics Grand Prix to be held in Switzerland in May for which she is raising funds. If she is selected by SASCOC (South African Sports Confederation and Olympic Committee), her next stop is the Paralympic Games in Rio de Janeiro, which is just six months away.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept