Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Alexander Ramm Cello Recital with Pieter Jacobs (piano)
2016-04-15

Description: Ramm Tags: Ramm

Alexander Ramm

“Ramm plays with enormous musical authority. Unlike many young instrumentalists, he is not intimidated by the reflective or the elegiac; nor is he nervous about the length of pauses, or the creation of inter-phrase silence. He has a phenomenal technique and he demonstrated it to full effect in this captivating performance.” (Cape Times)

Alexander Ramm belongs to the new generation of cellists recognised for his appealing artistic creativity and unprecedented technical skills. Alexander started his musical education at the age of seven at the Glier music school (Kaliningrad) with Svetlana Ivanova. Her extremely serious attitude to music studies and pedagogical talent revealed the rare musical capabilities of this young cellist.

After moving to Moscow at the age of ten, he was accepted to the class of Maria Zhuravleva at the Chopin Moscow College of Music Performance. From 2007, he continued his professional education at the Moscow Conservatory in the class of the renowned musician and the People’s Artist of the USSR, Natalia Shakhovskaya, an outstanding performer and pedagogue who taught most prominent Russian cellists. Since 2012, he has become a postgraduate student at the Hanns-Eisler Hochschule fur Musik under the guidance of the famous cellist, Frans Helmerson.

From the age of nine, when he made his debut as a soloist with the Kaliningrad Chamber Orchestra, Alexander brilliantly performs with solo programmes and as a soloist with leading orchestras in Russia and worldwide.

He is prizewinner at several international competitions:
1st prize: 4th Moscow Competition for young cellists (2003)
1st prize: 1st Cambridge International Boston Competition (Massachusetts, 2005)
Grand-Prix: Moscow Festival of Romantic Music (Moscow, 2006)
4th prize: 5th UNISA International String Competition (South Africa, 2010)
1st prize: 3rd Beijing International Music Competition (Beijing 2010)
1st prize: 1st All-Russia Music Competition (Russia, 2010)
Prizewinner: Janigro Cello Competition (Croatia, 2012)
Prizewinners: Swedish Duo Competition with duo partner Anna Odintsova (2012)
3rd prize: Paulo Cello Competition (2013) – becoming the first Russian prizewinner in the history of this prestigious contest
2nd prize: XV International Tchaikovsky Competition (2015)

Alexander participated in masterclass festivals at Courchevel Academy and Holland Music Sessions, where he took lessons from the famous musicians such as F. Muller, R. Latzko, M. Kliegel and U. Wiesel. In 2011, he took part in the well-known Verbier festival, where he studied with H. Hoffmann, F. Helmerson, M. Suzuki, L. Power and F. Radosh. At the end of the festival, he was awarded the Neva Foundation top-level prize for gifted students.

Alexander cooperates with such outstanding conductors as V. Gergiev, V. Spivakov, A. Levin, K. Orbelyan, V. Polyansky, S. Kochanovsky, M. Fedotov, A. Slutsky, A. Sladkovsky.

He will be accompanied by Pieter Jacobs, a graduate of the University of Pretoria, who then furthered his studies at Yale in the United States, where he pursued his performing career with considerable success as a soloist and chamber musician in Boston, Cambridge and New Haven before returning to South Africa to perform and teach at the University of Pretoria. Pieter is regarded as one of SA’s foremost pianists and chamber musicians.

Programme:

Grieg: Cello Sonata, Op. 36 in A minor (1883)
Barber: Cello Sonata, Op. 6 in C minor (1932)
Prokofiev: Cello Sonata, Op. 119 (1949)
Piazzolla: Le Grand Tango for cello and piano

Date: 22 April 2016
Time: 19:30
Venue: Odeion
Costs: R130 (adults), R90 (pensioners), R70 (UFS staff members), R50 (students and learners), R50 (group booking of 10+). Tickets available at Computicket.

More information: Ninette Pretorius +27(0)51 401 2504.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept