Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

UFS establishes a Postgraduate office
2007-07-18

The University of the Free State (UFS) will establish a postgraduate office that will serve as a one-stop service for the co-ordination of academic support services for postgraduate students.

According to the Director: Research Development at the UFS, Prof Frans Swanepoel, the primary purpose of the Postgraduate Office is to provide co-ordination and support services for postgraduate students and postdoctoral fellows, as well as academic staff across the University.

“Guided by values such as intellectual inquiry, innovation, collegiality, integrity and efficiency, the Postgraduate Office will seek to foster a challenging, inclusive and supportive environment for postgraduate teaching, learning, research and scholarship; and will strive to engage students in the vibrant life of a research university”, Prof Swanepoel said.

All sectors of the University, namely students, faculties and staff, stand to benefit from the establishment of this office. Amongst other benefits for these sectors, postgraduate students and postdoctoral research fellows will have their interests promoted in synergy with faculty and departmental facilities. On the other hand, the office will provide a critical resource to the faculties in the form of a single database of postgraduate students, postgraduate topics, supervisors and funding opportunities. Furthermore, it will serve as a useful resource and base for training and information for younger and less experienced staff members.

The establishment of this office will be undertaken in two phases. The first phase will focus on the most critical areas that will make an immediate impact and the second phase on those areas that are not as urgent.

Areas that will be prioritised include the appointment of a manager and co-ordination of stakeholders, the provision of information and communication, useful resources for the UFS, policy administration and monitoring, postgraduate supervisors’ facilitation, recruitment activities, advice and referral, and postgraduate scholarship and bursary management.

The less urgent components of the office will be the development and implementation of academic and professional support programmes, the formation of a research information commons to create an integrated learning environment for postgraduate students, and the development of a postgraduate association or a postgraduate students’ liaison committee to provide a recognised channel of communication between postgraduate students and the University authorities.

The Postgraduate Office will form a vital component of the Directorate Research Development (DRD) at the UFS because of its experience and a noteworthy track record with regard to a facilitative and co-ordinating role that would be essential for the office.

“Establishing the Postgraduate Office as part of the Directorate would give the Centre the necessary links to the research-related issues that are important to most of the postgraduate students at the UFS. Of essential importance will be the linkages with the full spectrum of Strategic Clusters”, Prof Swanepoel explained.

“An important component of the Postgraduate Office will be related to international students and international opportunities for UFS postgraduate students. As the Office for Internationalisation has similarly been placed within the Directorate, the work of the Postgraduate Office will be facilitated by similar placement within the same Directorate”, he concluded.

Media release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt.stg@mail.ufs.ac.za  
18 July 2007
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept