Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

UFS researchers help find opportunities to create knowledge
2016-09-15

Description: Mobile libraries  Tags: Mobile libraries

The initiative hopes that the mobile libraries
will continue to contribute towards literature
awareness and access to books at rural
schools in the Free State.
Photo: Supplied

Did you know that only 3 392 primary schools in South Africa have libraries? In the Free State the statistics are shocking. Only 277 primary schools have libraries, while 1 087 carry on without them. One of nine provinces in South Africa, the Free State is regarded as a rural province. The South African Primary Education Support Initiative (SAPESI), in partnership with other sponsors, has committed to expanding access to books by donating mobile libraries to service schools across South Africa. In the Free State, the project is embraced by the Free State Department of Education, which employs the mobile operators and library assistants to service these libraries, driving many kilometres of gravel road to visit remote farm schools and other under-resourced schools. SAPESI has set a goal to supply 75 mobile libraries to provide 2 000 schools with access to books by the year 2020.

Discovering the value of the mobile libraries
Although the mobile libraries in the Free State have been functioning since 2007, no formal research had been conducted on their work. Towards the end of 2014, the Free State Department of Education and the Flemish Association for Development Cooperation and Technical Assistance (VVOB) commissioned the UFS to carry out a participatory action research project. Dr Lynette Jacobs, Head of the School of Education Studies at the University of the Free State’s Faculty of Education and her team engaged with role-players at district and provincial level in a Participatory Action Research project.

The research project aimed to describe the work that mobile libraries do, and appraise its influence on learners and schools, towards improving their functionality. In addition, this project aimed to build research capacity within the district teacher development centres.

Highlights of the mobile library project
The way the Free State Department of Education embraced and supported the initiative by Mr Tad Hasunuma and SAPESI, was inspiring. Each of the five education districts has two fully equipped library buses that periodically visit schools. The stock on the buses is regularly replaced by books that SAPESI receives from the international community. Specific books are also loaded for teachers to use as resources. One of the outcomes of the research project was that guidelines were developed for teachers on how to use books in addition to curriculum material in the classroom. At district level, the teams reflected on the work that they were doing and implemented improvement plans to provide an even better service. Findings of the project were presented at the XIV Annual International Conference of the Bulgarian Comparative Education Society that focused on education provision earlier this year. It was lauded by representatives of the international education community as an example of good practice to provide education to marginalised children.

Reading helps enrich children’s lives
The research project concluded by stating that the aim of the mobile libraries was to provide learners and teachers at rural and farm schools with reading books, and they were doing as best they could. While the mobile libraries cannot make up for possible challenges related to teaching and learning or in infrastructure, the learners and the teachers are regularly provided with good resources to encourage reading and stimulate literacy development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept