Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Democracy and political tolerance truly thrive during Qwaqwa Campus SRC elections
2016-09-16

Description: 2017 SR Qwaqwa  Tags: 2017 SR Qwaqwa

The newly-elected SRC President of the Qwaqwa
Campus, Njabulo Mwali (left), being congratulated
by his predecessor, Paseka Sikhosana.
Ph
oto: Thabiso Gamede

Voter turnout during the recent SRC elections among the best in the country at over 60%

The 2016-2017 Qwaqwa Campus SRC elections have once again proven that democracy and political tolerance are truly thriving on the Qwaqwa Campus. This was evidenced by the calm surrounding the highly contested elections ever.

According to Mandla Ndlangamandla, Electoral Committee Chairperson, this year’s elections were highly contentious, yet with a high level of tolerance.

"We only had two political structures, namely the South African Democratic Student Movement (Sadesmo) and the South African Student Congress (Sasco), but the level of engagement was really commendable,” he said.

“Of the 4 200 registered students on campus, more than 2 500 cast their votes in their quest to influence student leadership and governance to advance student aspirations," said Ndlangamandla during the handover ceremony.

In accepting the leadership baton from his predecessor, Paseka Sikhosana, the new President, Njabulo Mwali, said his immediate goal was to unite all students behind the new leadership.

In acknowledging the role student governance can play in developing the campus, the Acting Campus Principal, Teboho Manchu, said the campus was proud to have a student leadership that would always keep the interests of their constituency on top of their agenda.

“We will definitely work hand-in-hand with the new student government. In case of any disagreements, please note that you have the right to take up any such matters with the top management of the university in order to advance the entire student body,” he added.

The 2016-2017 Qwaqwa Campus SRC is as follows:

LIST OF SRC MEMBERS 2016-2017

Elective Portfolios

 

Name and Surname

Portfolio

Njabulo Mwali

President General

Siyabonga Ngubo

Deputy President

Joy Mapule Motloung

Secretary General

Bongela Nyandeni

Treasurer General

Mpumelelo Tshabalala

Politics and Transformation

Nomcebo Mqushulu

Media and Publicity

Ntokozo Michael Masiteng

Student Development and Environmental Affairs

   

Ex Officio Portfolios

 

Khulani Mhlongo

Arts and Culture

Polaki Mazibuko

Academic Affairs

Ntokozo Mbali Thango

Sports Affairs

Motlatsi Lisley Lebona

Religious Affairs

Sandile Ntamane

Residence Affairs

Itumeleng Chefter

RAG Comm. and Dialogue

Thulebona Thomas Khumalo

Off-campus

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept