Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

NRF researcher addresses racial debates in classrooms
2017-03-24

Description: Dr Marthinus Conradie Tags: Dr Marthinus Conradie

Dr Marthinus Conradie, senior lecturer in the
Department of English, is one of 31 newly-rated National
Research Foundation researchers at the University of
the Free State.
Photo: Rulanzen Martin

Exploring numerous norms and assumptions that impede the investigation of racism and racial inequalities in university classrooms, was central to the scope of the research conducted by Dr Marthinus Conradie, a newly Y-rated National Research Foundation (NRF) researcher.

Support from various colleagues
He is one of 31 newly-rated researchers at the University of the Free State (UFS) and joins the 150 plus researchers at the university who have been rated by the NRF. Dr Conradie specialises in sociolinguistics and cultural studies in the UFS Department of English. “Most of the publications that earned the NRF rating are aimed to contributing a critical race theoretic angle to longstanding debates about how questions surrounding race and racism are raised in classroom contexts,” he said.

Dr Conradie says he is grateful for the support from his colleagues in the Department of English, as well as other members of the Faculty of the Humanities. “Although the NRF rating is assigned to a single person, it is undoubtedly the result of support from a wide range of colleagues, including co-authors Dr Susan Brokensha, Prof Angelique van Niekerk, and Dr Mariza Brooks, as well as our Head of Department, Prof Helene Strauss,” he said.

Should debate be free of emotion?
His ongoing research has not been assigned a title yet, as he and his co-author does not assign titles prior to drafting the final manuscript. “Most, but not all, of the publications included in my application to the NRF draw from discourse analysis of a Foucauldian branch, including discursive psychology,” Dr Conradie says. His research aims to suggest directions and methods for exploring issues about race, racism, and racial equality relating to classroom debates. One thread of this body of work deals with the assumption that classroom debates must exclude emotions. Squandering opportunities to investigate the nature and sources of the emotions provoked by critical literature, might obstruct the discussion of personal histories and experiences of discrimination. “Equally, the demand that educators should control conversations to avoid discomfort might prevent in-depth treatment of broader, structural inequalities that go beyond individual prejudice,” Dr Conradie said. A second stream of research speaks to media representations and cultural capital in advertising discourse. A key example examines the way art from European and American origins are used to imbue commercial brands with connotations of excellence and exclusivity, while references to Africa serve to invoke colonial images of unspoiled landscapes.

A hope to inspire further research
Dr Conradie is hopeful that fellow academics will refine and/or alter the methods he employed, and that they will expand, reinterpret, and challenge his findings with increasing relevance to contemporary concerns, such as the drive towards decolonisation. “When I initially launched the research project (with significant aid from highly accomplished co-authors), the catalogue of existing scholarly works lacked investigations along the particular avenues I aimed to address.”

Dr Conradie said that his future research projects will be shaped by the scholarly and wider social influences he looks to as signposts and from which he hopes to gain guidelines about specific issues in the South African society to which he can make a fruitful contribution.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept