Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Research into surrogate milk important to wildlife conservation
2017-05-08

Description: Prof Garry Osthoff  Tags: Prof Garry Osthoff

Prof Gary Osthoff from the UFS Department of
Microbial, Biochemical and Food Biotechnology,
will soon work on a milk formula for elephants.
Photo: Supplied

Research is being done at the University of the Free State (UFS) to analyse and synthetically imitate the unique milk of various wildlife species. This research is not only of scientific value, but also serves the conservation of South Africa’s wildlife species. At the forefront of this research is Prof Garry Osthoff from the Department of Microbial, Biochemical and Food Biotechnology.

Orphaned rhino calf pulled through with surrogate milk

“There is still a lot of research to be done. Naturally the research is of scientific importance, but with surrogate milk having the same composition as the mother’s milk of a specific species, orphaned calves or cubs of that species could be pulled through during a difficult time of weaning. Bearing in mind that exotic animals fetch thousands and even millions of rands at auctions, it goes without saying a game farmer will do everything possible to provide only the best nourishment to such an orphaned animal. In such a case, synthetically-manufactured milk would be the right choice,” says Prof Osthoff.

The fruits of his research were recently demonstrated in Germany when a rhino calf was left orphaned in the Leipzig Zoo. Prof Osthoff’s article: “Milk composition of a free-ranging white rhinoceros during late lactation” was used as a directive for applying surrogate milk for horse foals (which is already commercially available), since the composition of horse and rhino milk largely corresponds. The surrogate milk was used with great success and the rhino calf is flourishing. He mentions that such an orphan is often given the wrong nourishment with the best intentions, resulting in the starvation of the animal despite the amount of cow’s milk it devours.

With surrogate milk having the same
composition as the mother’s milk of a
specific species, orphaned calves or
cubs of that species could be pulled
through during the difficult time
of weaning.

Milk formula for baby elephants in the pipeline
With baby elephants left orphaned due to the increase in elephant poaching for their ivory, several attempts have been made to create a milk formula in order to feed these elephants. To date, many elephants have died in captivity from side effects such as diarrhoea as a result of the surrogate formula which they were fed.

Prof Osthoff recently received a consignment of frozen milk which he, together with researchers from Zimbabwe, will use to work on a milk formula for elephants. They are studying the milk in a full lactation period of two years. During lactation, the composition of the milk changes to such an extent that a single surrogate formula will not be sufficient. Four different formulas should probably be designed.

Prof Osthoff says that of the different species he has researched, elephants are the most interesting and deviate most from the known species.

Although his research to develop surrogate milk is adding much value to the wildlife industry, and although he finds this part of his work very exciting, his research focus is on food science and nutrition. “What is currently authentic in milk research is the study of the fat globules with content, the structure and composition of the casein micelle, and the prebiotic sugars. The knowledge which is gained helps to improve the processing, development of new food products, and development of food products for health purposes,” says Prof Osthoff.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept