Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Department of Chemistry moves into world-class facilities
2008-05-16

 

Attending the opening of the first and second phases of the Department of Chemistry's upgraded research facilities on the Main Campus of the UFS in Bloemfontein are, from the left: Prof. André Roodt, Head of the department, Prof. Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS, and Ms Tania van Zyl, Architect from Goldblatt Yuill Architects in Bloemfontein.
Photo: Leonie Bolleurs

UFS Department of Chemistry moves into world-class facilities

The University of the Free State’s (UFS) Department of Chemistry recently moved into the first and second phases of the southern wing of the upgraded Moerdyk and annex building in which the department is situated. The wing is part an extensive project to upgrade the building and its facilities.

At a total costs of R40 million for the upgrading of the building and R30 million for the equipment, this is the biggest project of its kind in the history of the UFS.

The upgrading is taking place in four phases, of which the largest part is the southern wing. Researchers and undergraduate students recently moved into this part of the building, which consists of the first- and second-year laboratories. The laboratories consist of, among others, larger and safer venting and research-focused facilities as well as enough storage for the department’s equipment. Although one of the water-cooling systems on the roof of the building recently caught fire, all classes, practical and research work is going ahead without any disturbance.

“The putting into service of the first two phases is a milestone for the department. The project is almost half way and, when it is completed by the middle to end of 2009, we will boast with some of the best research and undergraduate laboratories in the country. It will also increase our leadership in advanced training on the continent and will strengthen the UFS’s role in the international chemistry arena,” says Prof. André Roodt, head of the department.

According to Prof. Roodt advanced research on fuel and nano particles (this is particles as big as one hundred thousandth of a human hair strand) will be conducted in the completed laboratories as part of the UFS’s research cluster initiative. Other research such as anti cancer remedies, research on various chemical processes and research on biological pharmacological remedies will also be done.

“During the past three years the department has made a significant impact on research in chemistry worldwide. Our academics are publishing in some of the world’s foremost chemistry journals and various presentations are made at international conferences. The upgraded facilities will ensure that we continue building on our high quality research and it will also ensure that our students can compete with the best in the world,” says Prof. Roodt.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
16 May 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept