Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 October 2019 | Story Valentino Ndaba | Photo Barend Nagel
BCom degree
Prospective students are invited to apply for the new BCom Business and Financial Analytics 2020 intake.

A new qualification has recently been added to the University of the Free State (UFS) curriculum and 30 prospective students still have the opportunity to form part of the BCom with specialisation in Business and Financial Analytics intake for 2020. The deadline for applications has been extended to 31 October 2019. 

Committed to the 4th industrial revolution

This flagship degree has been designed for the 4th Industrial Revolution as it integrates quantitative analysis, computer science, statistics and business. This new qualification will equip graduates to become high-functioning executives in the modern global business world. 

“The Faculty of Economic and Management Sciences identified the need for a BCom programme incorporating some of these skills in a more deliberate way, in order to prepare our graduates for a changing job market,” says Lizette Pretorius, Faculty Manager.

On par with global standards

International institutions such as Harvard Business School, Carnegie Mellon University, Duke University, and Columbia University have led the way by adopting this cohesive approach to business studies. These universities form part of a listing of the 25 top US schools offering Master’s in Business Analytics programmes. 

The UFS is following in these leading institutions as part of its Integrated Transformation Plan (ITP) to produce globally competitive graduates. According to the ITP: “The future state of engaged scholarship will be an important anchor in maintaining the relevance of the academic syllabus, and linking real local needs to the global knowledge project.”

 Click here to complete the application form. 

Please email the form and required documents to Lizette Pretorius at LPretorius@ufs.ac.za.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept