Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 October 2019 | Story Xolisa Mnukwa | Photo Xolisa Mnukwa
DOTY
From the left; Gift Taku, 2019 Doty winner; Reabetswe Mabine, Doty Coordinator Tshepo Zweni, first runner-up and Jacobeth Selinga, second runner-up

The votes have been tallied, and after much deliberation, the UFS is proud to announce Gift Taku as the winner of the 2019 KovsieGear Designer of the Year (DOTY) Competition!

Tshepo Zwane and Jacobeth Selinga won second and third place respectively, with innovative designs that complied with the assessment requirements, based on originality of the design, adherence to the brand guidelines, creativity, and other criteria.

Gift’s design triumphed with 845 votes on the UFS KovsieLife webpage, as well as in the presentation in front of a judging panel.

Since 2016, KovsieGear has been discovering local (UFS staff and students) graphic designers and giving them a platform to showcase their work through DOTY, which runs annually. The aim of the competition is to support local talent by giving entrants an opportunity to come up with creative designs that are unique to the university and which will be used on limited-edition apparel in the store, as well as getting featured in the KovsieGear catalogue.

The competition has since fashioned the best clothing-logo designs the university has ever seen and continues to motivate and empower students to make positive contributions to the Kovsie campus culture and brand.


For more information about DOTY contact Reabetswe Mabine at MabineR@ufs.ac.za 

The winning design by Gift Taku:

Gift design

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept