Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 October 2019 | Story Rulanzen Martin | Photo Rulanzen Martin
MICT Seta Grant
The MICT SETA Journalism programme will give addition training to 20 Journalism students from the Department of Communication Science.

Student success is one of the key components in the Integrated Transformation Plan. Facilitated by a grant from the Media Information and Communication Technologies (MICT) SETA, the Department of Communication Science at the University of the Free State (UFS) is providing an additional training opportunity for its students with a programme for second-year journalism students. 

The MICT SETA Journalism Short Programme is a prestigious extracurricular opportunity. “The programme will provide additional exposure and training in specialist areas not necessarily covered in depth as part of the BA (Journalism) degree,” says Dr Willemien Marais, Programme Director: Communication Science. “Participation in this programme provides students the opportunity to build a portfolio to enhance their employability.” 

The SETA grant was acquired through an application made by the department with the assistance of Juanita Burjins Head: Leadership and Development Unit in the Human Resources Department at the UFS, and was signed earlier this year.

In-depth training 

The programme will entail short courses on writing, photojournalism, documentary filmmaking, entrepreneurship and personal development. 
“It gives us an opportunity to swim in an ocean where it feels you are drowning. I am very excited to have been chosen to be part of the programme,” says.Rene Robinson, a second-year Journalism student and one of 20 selected for the programme. They were selected based on academic performance as well as on the essay they wrote. 

Robinson says: “As a Journalism student you meet a lot of negativity about the degree you are pursuing and this programme offers a chance to elevate yourself.” 
Keamogetswe Mosepele, who is also part of the programme, adds: “I am really excited to see what it will deliver.” 

The programme specifically targets second-year students so these students, once in their final year, can share their experience through assisting a new cohort of first-year journalism students in various practical exercises, thus reinvesting in the department. They will also work at various media partners of the Department of Communication Science.

MICT Seta grant
From the left;  Nkonsinathi Gabuza, from the MICT Seta; Dr Willemien Marais; Prof Collin Chasi, Head of the Department Communication
 Science and Juanita Burjins. (Photo: Rulanzen Martin)

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept