Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 October 2019 | Story Rulanzen Martin | Photo Rulanzen Martin
MICT Seta Grant
The MICT SETA Journalism programme will give addition training to 20 Journalism students from the Department of Communication Science.

Student success is one of the key components in the Integrated Transformation Plan. Facilitated by a grant from the Media Information and Communication Technologies (MICT) SETA, the Department of Communication Science at the University of the Free State (UFS) is providing an additional training opportunity for its students with a programme for second-year journalism students. 

The MICT SETA Journalism Short Programme is a prestigious extracurricular opportunity. “The programme will provide additional exposure and training in specialist areas not necessarily covered in depth as part of the BA (Journalism) degree,” says Dr Willemien Marais, Programme Director: Communication Science. “Participation in this programme provides students the opportunity to build a portfolio to enhance their employability.” 

The SETA grant was acquired through an application made by the department with the assistance of Juanita Burjins Head: Leadership and Development Unit in the Human Resources Department at the UFS, and was signed earlier this year.

In-depth training 

The programme will entail short courses on writing, photojournalism, documentary filmmaking, entrepreneurship and personal development. 
“It gives us an opportunity to swim in an ocean where it feels you are drowning. I am very excited to have been chosen to be part of the programme,” says.Rene Robinson, a second-year Journalism student and one of 20 selected for the programme. They were selected based on academic performance as well as on the essay they wrote. 

Robinson says: “As a Journalism student you meet a lot of negativity about the degree you are pursuing and this programme offers a chance to elevate yourself.” 
Keamogetswe Mosepele, who is also part of the programme, adds: “I am really excited to see what it will deliver.” 

The programme specifically targets second-year students so these students, once in their final year, can share their experience through assisting a new cohort of first-year journalism students in various practical exercises, thus reinvesting in the department. They will also work at various media partners of the Department of Communication Science.

MICT Seta grant
From the left;  Nkonsinathi Gabuza, from the MICT Seta; Dr Willemien Marais; Prof Collin Chasi, Head of the Department Communication
 Science and Juanita Burjins. (Photo: Rulanzen Martin)

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept