Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 October 2019 | Story Ruan Bruwer | Photo Varsity Sports
Lefebere and Khanyisa
Lefébre Rademan (left) and Khanyisa Chawane before the start of the Varsity Netball clash. Rademan was named the Player of the Tournament, a reward Chawane received last year.

For the sixth time in the seven years of the competition, the best player in the Varsity Netball tournament hails from the University of the Free State (UFS).

Lefébre Rademan, captain of the Kovsie netball team who ended third in Varsity Netball, was named as the Player of the Tournament and the Players’ Player of the Tournament on Monday night (7 October). Previous UFS recipients of the award are Ané Bester (2013), Karla Pretorius (in 2014 and 2015), Khomotso Mamburu (2016), and Khanyisa Chawane (2018).

Rademan shot 176 goals from 214 attempts for a goal average of 82%. In both the Premier League and National Championship, she received the prize for the best shooter this year.

The news comes shortly after the announcement that a UFS teammate has secured a contract to play overseas next year. Khanyisa Chawane, who impressed immensely as a member of the Proteas at this year’s World Cup, will represent Bath in Europe’s Superleague. The 23-year-old Chawane also received an offer to play in the Australian league, but the one in England suited her better.

She will return to Bloemfontein midway through the year and will still be available for the Kovsie netball team, as she will continue her studies. The talented mid-courter follows in the footsteps of Pretorius, who also spent a season with Bath in 2016.

“I am really thrilled to have signed with Bath. There is no doubt that I’m going to come out a better player; I’m grateful to have been scouted and given this opportunity to play for such a big team. It still brings tears to my eyes when I think about it.”

“My goal has always been to play abroad and to challenge myself. I always strive to better myself and give my best on and off court,” Chawane said about the opportunity next year.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept