Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 October 2019 | Story Ruan Bruwer | Photo Varsity Sports
Lefebere and Khanyisa
Lefébre Rademan (left) and Khanyisa Chawane before the start of the Varsity Netball clash. Rademan was named the Player of the Tournament, a reward Chawane received last year.

For the sixth time in the seven years of the competition, the best player in the Varsity Netball tournament hails from the University of the Free State (UFS).

Lefébre Rademan, captain of the Kovsie netball team who ended third in Varsity Netball, was named as the Player of the Tournament and the Players’ Player of the Tournament on Monday night (7 October). Previous UFS recipients of the award are Ané Bester (2013), Karla Pretorius (in 2014 and 2015), Khomotso Mamburu (2016), and Khanyisa Chawane (2018).

Rademan shot 176 goals from 214 attempts for a goal average of 82%. In both the Premier League and National Championship, she received the prize for the best shooter this year.

The news comes shortly after the announcement that a UFS teammate has secured a contract to play overseas next year. Khanyisa Chawane, who impressed immensely as a member of the Proteas at this year’s World Cup, will represent Bath in Europe’s Superleague. The 23-year-old Chawane also received an offer to play in the Australian league, but the one in England suited her better.

She will return to Bloemfontein midway through the year and will still be available for the Kovsie netball team, as she will continue her studies. The talented mid-courter follows in the footsteps of Pretorius, who also spent a season with Bath in 2016.

“I am really thrilled to have signed with Bath. There is no doubt that I’m going to come out a better player; I’m grateful to have been scouted and given this opportunity to play for such a big team. It still brings tears to my eyes when I think about it.”

“My goal has always been to play abroad and to challenge myself. I always strive to better myself and give my best on and off court,” Chawane said about the opportunity next year.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept