Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 October 2019 | Story Ruan Bruwer | Photo Varsity Sports
Lefebere and Khanyisa
Lefébre Rademan (left) and Khanyisa Chawane before the start of the Varsity Netball clash. Rademan was named the Player of the Tournament, a reward Chawane received last year.

For the sixth time in the seven years of the competition, the best player in the Varsity Netball tournament hails from the University of the Free State (UFS).

Lefébre Rademan, captain of the Kovsie netball team who ended third in Varsity Netball, was named as the Player of the Tournament and the Players’ Player of the Tournament on Monday night (7 October). Previous UFS recipients of the award are Ané Bester (2013), Karla Pretorius (in 2014 and 2015), Khomotso Mamburu (2016), and Khanyisa Chawane (2018).

Rademan shot 176 goals from 214 attempts for a goal average of 82%. In both the Premier League and National Championship, she received the prize for the best shooter this year.

The news comes shortly after the announcement that a UFS teammate has secured a contract to play overseas next year. Khanyisa Chawane, who impressed immensely as a member of the Proteas at this year’s World Cup, will represent Bath in Europe’s Superleague. The 23-year-old Chawane also received an offer to play in the Australian league, but the one in England suited her better.

She will return to Bloemfontein midway through the year and will still be available for the Kovsie netball team, as she will continue her studies. The talented mid-courter follows in the footsteps of Pretorius, who also spent a season with Bath in 2016.

“I am really thrilled to have signed with Bath. There is no doubt that I’m going to come out a better player; I’m grateful to have been scouted and given this opportunity to play for such a big team. It still brings tears to my eyes when I think about it.”

“My goal has always been to play abroad and to challenge myself. I always strive to better myself and give my best on and off court,” Chawane said about the opportunity next year.

News Archive

Oxford professor unlocks secrets of DNA
2017-03-31

Description: Oxford professor unlocks secrets of DNA Tags: Oxford professor unlocks secrets of DNA

From left are: Dr Cristian Capelli, Associate Professor
of Human Evolution at Oxford University;
Dr Karen Ehlers, Senior Lecturer and Prof Paul Grobler,
both from the Department of Genetics at the UFS.
Photo: Siobhan Canavan

Many people are interested to know more about their history and origins, and with the help of genetics, it is possible to provide more information about one’s roots.

During a lecture at the Department of Genetics at the University of the Free State (UFS), Dr Cristian Capelli, Associate Professor of Human Evolution at Oxford University in the UK, addressed staff members and students on the history of our species.

Reconstructing the history of human population
With his research, titled: People on the move: population structure and gene-flow in Southern Africa, Dr Capelli looks at reconstructing the history of human populations, focusing mainly on how the different human populations are related, as well as how they exchange genes.

He said this research could be of great significance to the medical field too. “Knowing what the genetic make-up of individuals is, can give us some information about their susceptibility to diseases, or how they would react to a given medicine. Therefore, this knowledge can be used to inform health-related policies.”

Combining individual histories of multiple people
To understand this research more clearly, Dr Capelli explained it in terms of DNA and how every individual receives half of their DNA from their mother and half from their father just as their parents had received theirs from their parents. And so it goes from generation after generation. Each individual stores a part of their ancestors’ DNA which makes up the individual genetic history of each person.

“If we combine these individual histories by looking at the DNA of multiple people, we can identify the occurrences that are shared across individuals and therefore reconstruct the history of a population, and in the same way on a larger scale, the history of our own species, homo sapiens.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept