Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 October 2019 | Story Nikile Ntsababa (Registrar)

The nomination process for the election of two representatives to serve on the UFS Council was finalised on Tuesday, 17 September 2019 – the closing date for nominations.
 
Here are the names of the nominees (listed alphabetically):
 
Representative from the Qwaqwa Campus:
None
 
Other representative:
Mr Christo Dippenaar
Dr Pieter du Toit
Mr Lefa Mabaso
Dr Walter Matli
Mr Zama Sigwebela
 
Please note that no nominations were received for representatives from the Qwaqwa Campus.  Since this scenario is not legislated in the Statute, Institutional Rules, and Convocation Constitution, the Registrar will, after consultation with the President of the Convocation, open another round of nominations for Qwaqwa representatives to Council (with the closing date 8 October 2019) to ensure that the campus is also represented on Council.
 
Convocation and Alumni members from the Qwaqwa Campus are therefore given a second opportunity to nominate one representative from among their members for the Qwaqwa Campus.  All nominations must reach the office of the Registrar no later than 16:30 on Wednesday, 9 October 2019.
 
Every nomination form  shall be signed by four (4) members of the Convocation and shall contain the written acceptance of the nomination by the nominee under his/her signature as well as an abridged CV and a motivation of more or less 200 words.
 
Nominations are to be submitted to:  email: registrar@ufs.ac.za or delivered by hand to Nikile Ntsababa, Main Building, Room 51, Bloemfontein Campus.
 
Kindly take note that late or incomplete nominations will not be accepted or considered.
 
Further information regarding the election process will follow in due course.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept