Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 October 2019 | Story Thabo Kessah | Photo Tshepo Moeketsi
Prof Pearl Sithole
Prof Pearl Sithole says higher education needs to create space for Africa to be contributors and innovators of knowledge.

“Excellence is my main priority. For me, excellence means mastery of cross-communicable science and liberation of intellectual creativity that is free of mere complacency and acknowledging the right to analyse from where we stand. I am unapologetic about indigenous knowledge being the basis for scientific advancement.” This is how the newly appointed Vice-Principal: Academic and Research, Prof Pearl Sithole, sums up her vision and plan for academia and research on the Qwaqwa Campus. 

She believes that the human mind is geared towards ‘seeking and constantly explaining itself in the service of innovative change.’ 

“With this service of innovative change fully realised, the Qwaqwa Campus will be able to produce students who can analyse, innovate, and solve real social and world problems. For me, this is the University of the Free State graduate I pine to see – and there had better be truth to the ‘free’ part of this intellectual soul! I see Qwaqwa as a site for this intellectual innovation catalyst,” she said.

Social anthropologist

Prof Sithole is a Social Anthropology graduate with both master’s and PhD degrees from the University of Cambridge in England. “I stumbled upon Anthropology as part of my three majors at the then University of Durban-Westville. This discipline confessed its previous conceptual sins in a way that inspired change! From the exploration of human origins, to economic and political developments, and that was Anthropology. I was just absolutely taken by its acknowledgement of the intellectual project being socio-culturally rooted,” she said about her chosen area of study.

“I have always been inspired by Archie Mafeje’s work. I was motivated by Bernard Magubane’s scholarship, and I marvelled at the rigour of Oyeronke Oyewumi and Marilyn Strathern in feminist discourse. I mention these, because they inspire intellectual passion in me and I eventually met them,” she added.

Higher education in SA

She believes the higher-education sector is succumbing to streamlining methods, uninformed processes, and very little impact. “Like in government, higher education should not suffer from reduction of people into statistics, interventions into annual performance plan targets, and planning and monitoring into sanitised expenditure against targets. I see the shortage of relevance, responsiveness, and humanness; as well as ‘being captured’ by the latest fashions of doing rigid academe as the major challenges of higher education in South Africa today. We need to liberate our own innovative potential. We really need to create space for Africa to be contributors and innovators of knowledge,” Prof Sithole, the author of Unequal Peers, said.

She is, however, optimistic about the future of higher education in South Africa. “The day that we will have our innovation systems and systems of defining excellence – liberated from merely kneeling before the altar of Westernisation – we will gain integrity both conceptually and instrumentally in terms of responding to a society that is waiting for higher education to solve societal problems. The solution is to let those who see this truth continue to produce the knowledge despite being less than pleasing to the average scientific oversight bodies steeped in conventional Western validation.”

Research interests

Prof Sithole was previously employed with the Public Service Commission as a commissioner, a position she held from 2015 to August 2019. Prior to that, she worked at the University of KwaZulu-Natal as an Associate Professor of Community Development from 2010 to 2015, and at the South African Human Sciences Research Council (HSRC) as a senior researcher from 2006 to 2010. Her research interests and areas of expertise are governance, gender and development, analysis of social inequality, and the politics of knowledge production.


News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept