Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 October 2019 | Story Thabo Kessah | Photo Tshepo Moeketsi
Qwaqwa research research
Mamokete Mokhatla (SRC: International Students Council), Pulane Xaba (Assistant: Afromontane Research Unit), Dr Hagenmeier, Morena Ntsane Mopeli, Prof Pearl Sithole, Chief Mlati, Kanego Mogotsi (Internationalisation: Qwaqwa Campus), and Prof Joseph Francis.

Communities are beginning to wonder if universities exist for themselves or for their communities. This is the view shared by Prof Pearl Sithole, Campus Vice-Principal: Academic and Research, during the opening of the two-day Travelling Seminar that was recently hosted on the Qwaqwa Campus. 

Research in communities

“This event is well-placed, considering what many communities are currently going through. We must ask ourselves what we are doing with and for our communities. We must be careful to not only reap data from them, but to be scientific in a way that accommodates our communities and allows the African and indigenous agenda into the world of science,” she added.

Providing background to the concept of homestays, the Director: Institute for Rural Development at the University of Venda, Prof Joseph Francis, acknowledged the role played by communities in research.

 “This seminar seeks to develop a testable framework for homestays; a concept enabling postgraduate students to be placed with rural families while conducting research in the area. It is also aimed at giving birth to a vibrant, community-based rural and regional development network connecting grassroots communities, business, government, and non-governmental stakeholders,” he said.

“We do not only train students for local deployment and within national borders. It is important to produce an ‘all-weather’ graduate who stands out wherever they are. Graduates must ask themselves, ‘what in me stands out among the rest?’ As a student and researcher, never see yourself as being confined to the space where you are,” he added.

Students as ambassadors

Cornelius Hagenmeier, Director: Office of International Affairs at the University of the Free State, said for internationalisation to work, it has to be inclusive and create student ambassadors. “As this seminar will show, our networks of stakeholder communities go beyond the national confines and borders. We must strive, through this project, to create ambassadors of the university, of communities, of the broader South Africa and Africa,” he said.

Participants in the seminar were academics and postgraduate students from both the Universities of the Free State and Venda. Also present were community and traditional leaders from Qwaqwa and the Vhembe District in Limpopo. 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept