Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 October 2019 | Story Ruan Bruwer | Photo Sonia Small
Springboks
Prof Francis Petersen, UFS Rector and Vice-Chancellor, paid a special visit to the Springboks in 2018 before they faced England in Bloemfontein. From the left are Jacques Nienaber (Springbok assistant coach), Oupa Mohoje (Springbok), Prof Petersen, Rassie Erasmus (Springbok head coach), and Swys de Bruin (Springbok consultant coach at the time). De Bruin, Erasmus, Nienaber, and Mohoje are all Kovsie alumni.


Like the rest of the country, we are behind our Springboks all the way. This is what Prof Francis Petersen, Rector and Vice-Chancellor of the University of the Free State (UFS), told alumnus Rassie Erasmus in a letter this week.

Prof Petersen wrote the letter to Erasmus, the head coach of the Springboks, to wish him everything of the best in the team’s preparation and for the game on Saturday (2 November 2019) at which they face England in the Rugby World Cup final in Japan.

"On behalf of the staff and students of the University of the Free State, I would like to wish you and the Springbok team all the best with your preparations this week and for the final. I know that Saturday’s match will be played with vigour and determination,” Prof Petersen wrote.

Prof Petersen said the UFS community was extremely proud of the Springboks’ achievements during the 2019 Rugby World Cup – especially with Erasmus at the helm of the team. The Boks defeated Japan in the quarter-final and Wales in the semi-final to reach their first final since 2007.

“As a former Shimla player and Kovsie Alumnus of the Year 1998, we are truly proud of what you have achieved during your career in South African rugby, and especially during the World Cup tournament. We are also proud of our other alumni – Jacques Nienaber as defence coach, and referee Jaco Peyper.”

Peyper refereed one of the quarter-finals and will be an assistant referee in the bronze medal play-off between New Zealand and Wales on 1 November 2019.

Under Erasmus the Springboks won the Rugby Championship this year, the first time since 2010. Erasmus and Nienaber have a long relationship. They met in the army in 1991. Later Nienaber served as physiotherapist with the Shimlas and Erasmus captained the team. They worked together at the Cheetahs, Cats, Stormers, Munster and now the Springboks.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept