Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 October 2019 | Story Anneri Meintjes | Photo Charl Devenish
Anneri Meintjes
Anneri Meintjes from the Centre for Teaching and Learning at the UFS.

The #FeesMustFall student-led movement started in 2015 to protest against increasing student fees and to call for increased government funding of universities. At the end of 2016, the protests led to mass disruption of academic activities in higher-education institutions countrywide. Some universities, including the University of the Free State (UFS), suspended academic activities for extended periods which necessitated online and blended learning approaches (the combination of face-to-face and online learning) to complete the academic year. In most cases, these methods were unplanned and unstructured, and knowledge gaps in good blended learning practice were identified.

The Carnegie Corporation of New York funded a two-year research project in collaboration with the University of Pretoria, UFS, University of Cape Town and University of Johannesburg to investigate the use of blended learning at the end of 2016, during the campus disruptions, as well as how these respective institutions used blended learning in 2017.

The prohibitive cost of data in South Africa means few of our students have access to the internet off-campus. The most recent data on UFS student digital identity shows that only 21% have consistent, reliable access to the internet at home. This is a challenge not only for the UFS but for all universities in the country.

“For technology to be used in a way that contributes to learning and teaching, we needed to investigate what works well and what does not, considering our contextual challenges” says Anneri Meintjes from the Centre for Teaching and Learning, who was the principal researcher for the UFS on this project. In the first phase of the research, she wrote a case study on the UFS’ approach to blended learning during and after the protests in 2016. The findings of this phase of the research were presented at a national convening of higher-education institutions across South Africa.

In the second phase of the research, the four participating universities produced open educational resources on good, blended learning practice to share with universities countrywide. The UFS was responsible for the development of online assessment resources and general best-practice guidelines for the use of blended learning. Anneri says: “While we had laid solid foundations for the effective use of online assessment at the UFS prior to 2016 through the investment in online assessment software and staff development in online assessment design, we learnt many valuable lessons during that time. It provided momentum for the establishment of formal online assessment procedures and refinement of best-practice guidelines. This research project gave us an opportunity to share our work on a national platform.” The number of lecturers that use online assessment in their modules has grown considerably at the UFS since 2016. In 2016, 211 online assessments were completed on Questionmark (UFS online assessment programme) and in 2018, this number had grown to 743. Institutional Blackboard use data shows that at least one online assessment tool is used in 47% of all modules on Blackboard.

Resources developed by the other participating institutions include a self-evaluation app that academics can use to reflect on their existing blended learning practices, and an online utility that assists lectures and course designers to plan blended learning modules.

Anneri also coordinated the development of the national website, which was launched at the Flexible Futures conference hosted by the University of Pretoria on 9-10 September 2019. The website and resources were praised at the conference for being a timely response to a critical need in the higher education community in South Africa.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept