Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 October 2019 | Story Anneri Meintjes | Photo Charl Devenish
Anneri Meintjes
Anneri Meintjes from the Centre for Teaching and Learning at the UFS.

The #FeesMustFall student-led movement started in 2015 to protest against increasing student fees and to call for increased government funding of universities. At the end of 2016, the protests led to mass disruption of academic activities in higher-education institutions countrywide. Some universities, including the University of the Free State (UFS), suspended academic activities for extended periods which necessitated online and blended learning approaches (the combination of face-to-face and online learning) to complete the academic year. In most cases, these methods were unplanned and unstructured, and knowledge gaps in good blended learning practice were identified.

The Carnegie Corporation of New York funded a two-year research project in collaboration with the University of Pretoria, UFS, University of Cape Town and University of Johannesburg to investigate the use of blended learning at the end of 2016, during the campus disruptions, as well as how these respective institutions used blended learning in 2017.

The prohibitive cost of data in South Africa means few of our students have access to the internet off-campus. The most recent data on UFS student digital identity shows that only 21% have consistent, reliable access to the internet at home. This is a challenge not only for the UFS but for all universities in the country.

“For technology to be used in a way that contributes to learning and teaching, we needed to investigate what works well and what does not, considering our contextual challenges” says Anneri Meintjes from the Centre for Teaching and Learning, who was the principal researcher for the UFS on this project. In the first phase of the research, she wrote a case study on the UFS’ approach to blended learning during and after the protests in 2016. The findings of this phase of the research were presented at a national convening of higher-education institutions across South Africa.

In the second phase of the research, the four participating universities produced open educational resources on good, blended learning practice to share with universities countrywide. The UFS was responsible for the development of online assessment resources and general best-practice guidelines for the use of blended learning. Anneri says: “While we had laid solid foundations for the effective use of online assessment at the UFS prior to 2016 through the investment in online assessment software and staff development in online assessment design, we learnt many valuable lessons during that time. It provided momentum for the establishment of formal online assessment procedures and refinement of best-practice guidelines. This research project gave us an opportunity to share our work on a national platform.” The number of lecturers that use online assessment in their modules has grown considerably at the UFS since 2016. In 2016, 211 online assessments were completed on Questionmark (UFS online assessment programme) and in 2018, this number had grown to 743. Institutional Blackboard use data shows that at least one online assessment tool is used in 47% of all modules on Blackboard.

Resources developed by the other participating institutions include a self-evaluation app that academics can use to reflect on their existing blended learning practices, and an online utility that assists lectures and course designers to plan blended learning modules.

Anneri also coordinated the development of the national website, which was launched at the Flexible Futures conference hosted by the University of Pretoria on 9-10 September 2019. The website and resources were praised at the conference for being a timely response to a critical need in the higher education community in South Africa.

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept