Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 October 2019 | Story Anneri Meintjes | Photo Charl Devenish
Anneri Meintjes
Anneri Meintjes from the Centre for Teaching and Learning at the UFS.

The #FeesMustFall student-led movement started in 2015 to protest against increasing student fees and to call for increased government funding of universities. At the end of 2016, the protests led to mass disruption of academic activities in higher-education institutions countrywide. Some universities, including the University of the Free State (UFS), suspended academic activities for extended periods which necessitated online and blended learning approaches (the combination of face-to-face and online learning) to complete the academic year. In most cases, these methods were unplanned and unstructured, and knowledge gaps in good blended learning practice were identified.

The Carnegie Corporation of New York funded a two-year research project in collaboration with the University of Pretoria, UFS, University of Cape Town and University of Johannesburg to investigate the use of blended learning at the end of 2016, during the campus disruptions, as well as how these respective institutions used blended learning in 2017.

The prohibitive cost of data in South Africa means few of our students have access to the internet off-campus. The most recent data on UFS student digital identity shows that only 21% have consistent, reliable access to the internet at home. This is a challenge not only for the UFS but for all universities in the country.

“For technology to be used in a way that contributes to learning and teaching, we needed to investigate what works well and what does not, considering our contextual challenges” says Anneri Meintjes from the Centre for Teaching and Learning, who was the principal researcher for the UFS on this project. In the first phase of the research, she wrote a case study on the UFS’ approach to blended learning during and after the protests in 2016. The findings of this phase of the research were presented at a national convening of higher-education institutions across South Africa.

In the second phase of the research, the four participating universities produced open educational resources on good, blended learning practice to share with universities countrywide. The UFS was responsible for the development of online assessment resources and general best-practice guidelines for the use of blended learning. Anneri says: “While we had laid solid foundations for the effective use of online assessment at the UFS prior to 2016 through the investment in online assessment software and staff development in online assessment design, we learnt many valuable lessons during that time. It provided momentum for the establishment of formal online assessment procedures and refinement of best-practice guidelines. This research project gave us an opportunity to share our work on a national platform.” The number of lecturers that use online assessment in their modules has grown considerably at the UFS since 2016. In 2016, 211 online assessments were completed on Questionmark (UFS online assessment programme) and in 2018, this number had grown to 743. Institutional Blackboard use data shows that at least one online assessment tool is used in 47% of all modules on Blackboard.

Resources developed by the other participating institutions include a self-evaluation app that academics can use to reflect on their existing blended learning practices, and an online utility that assists lectures and course designers to plan blended learning modules.

Anneri also coordinated the development of the national website, which was launched at the Flexible Futures conference hosted by the University of Pretoria on 9-10 September 2019. The website and resources were praised at the conference for being a timely response to a critical need in the higher education community in South Africa.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept