Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 October 2019 | Story Anneri Meintjes | Photo Charl Devenish
Anneri Meintjes
Anneri Meintjes from the Centre for Teaching and Learning at the UFS.

The #FeesMustFall student-led movement started in 2015 to protest against increasing student fees and to call for increased government funding of universities. At the end of 2016, the protests led to mass disruption of academic activities in higher-education institutions countrywide. Some universities, including the University of the Free State (UFS), suspended academic activities for extended periods which necessitated online and blended learning approaches (the combination of face-to-face and online learning) to complete the academic year. In most cases, these methods were unplanned and unstructured, and knowledge gaps in good blended learning practice were identified.

The Carnegie Corporation of New York funded a two-year research project in collaboration with the University of Pretoria, UFS, University of Cape Town and University of Johannesburg to investigate the use of blended learning at the end of 2016, during the campus disruptions, as well as how these respective institutions used blended learning in 2017.

The prohibitive cost of data in South Africa means few of our students have access to the internet off-campus. The most recent data on UFS student digital identity shows that only 21% have consistent, reliable access to the internet at home. This is a challenge not only for the UFS but for all universities in the country.

“For technology to be used in a way that contributes to learning and teaching, we needed to investigate what works well and what does not, considering our contextual challenges” says Anneri Meintjes from the Centre for Teaching and Learning, who was the principal researcher for the UFS on this project. In the first phase of the research, she wrote a case study on the UFS’ approach to blended learning during and after the protests in 2016. The findings of this phase of the research were presented at a national convening of higher-education institutions across South Africa.

In the second phase of the research, the four participating universities produced open educational resources on good, blended learning practice to share with universities countrywide. The UFS was responsible for the development of online assessment resources and general best-practice guidelines for the use of blended learning. Anneri says: “While we had laid solid foundations for the effective use of online assessment at the UFS prior to 2016 through the investment in online assessment software and staff development in online assessment design, we learnt many valuable lessons during that time. It provided momentum for the establishment of formal online assessment procedures and refinement of best-practice guidelines. This research project gave us an opportunity to share our work on a national platform.” The number of lecturers that use online assessment in their modules has grown considerably at the UFS since 2016. In 2016, 211 online assessments were completed on Questionmark (UFS online assessment programme) and in 2018, this number had grown to 743. Institutional Blackboard use data shows that at least one online assessment tool is used in 47% of all modules on Blackboard.

Resources developed by the other participating institutions include a self-evaluation app that academics can use to reflect on their existing blended learning practices, and an online utility that assists lectures and course designers to plan blended learning modules.

Anneri also coordinated the development of the national website, which was launched at the Flexible Futures conference hosted by the University of Pretoria on 9-10 September 2019. The website and resources were praised at the conference for being a timely response to a critical need in the higher education community in South Africa.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept