Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2019 | Story Xolisa Mnukwa | Photo Charl Devenish
Gradstar UFS
The 2019 GradStar programme is all about producing well-rounded students and providing them with opportunities in the world of work, explained Head of UFS Career Services, Belinda Janeke.

Congratulations to the Kovsies top-11 students who made it into the GradStar top-100 programme for 2019!

Each year, 100 South African students are selected through a rigorous four-phase judging process to become part of the GradStar programme. The programme is designed to offer opportunities for employment to previously unrecognised students.

What makes the top 11? 

According to the UFS Head of Career Services, Belinda Janeke, the GradStar programme is all about producing a well-rounded student. Approximately 6 000 applications were received from Kovsies, of which 500 were selected based on a personality test. Another test was given to the 500 students who passed the personality test, after which interviews were conducted to determine the top 100 from the UFS.  

The students who were selected to represent the UFS exhibited the most potential as future leaders in their respective fields. Apart from academic achievement, contestants were evaluated according to their individual soft skills such as motivation, discipline, altruism, and attitude. This combination promised to deliver top candidates for future employers. 

2019 GradStar programme experiences

Throughout the competition, Kovsie contestants were exposed to new people and opportunities to network with various companies in their preferred career fields, where they had the opportunity to share their CVs with potential employers. Contestants were also afforded the opportunity to develop critical problem-solving skills in the world of work. The GradStar top-100 students also have a WhatsApp group where jobs are advertised.

The programme was valuable for the Kovsies; not only did it prepare them for employment, but also provided them with an opportunity for learning and recognising their own strengths and weaknesses as individuals in the working world. 

Congratulations to the Kovsies who made it into the GradStar top 100: 

Mariné du Toit: Bachelor of Social Work
Nyiko Maluleka: Bachelor of Arts, Corporate and Marketing Communication
Bianca Malan: Bachelor of Accounting, Financial Accounting
Boitumelo Mancoe: Master of Business Administration
Kabelo Mashego: Bachelor of Medicine and Bachelor of Surgery (MB ChB)
Kananelo Moletsane: Bachelor of Agriculture
Mudzunga Mukwevho: Bachelor of Accounting, Financial Accounting
Neo Roberts: Bachelor of Science, Information Technology 
Refilwe Maimane: Bachelor of Commerce, Accounting 
Themba Makhoba: Bachelor of Public Administration
Mpolokeng Mmutle: Bachelor of Commerce, Accounting

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept