Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 October 2019 | Story Xolisa Mnukwa | Photo Charl Devenish
Gradstar UFS
The 2019 GradStar programme is all about producing well-rounded students and providing them with opportunities in the world of work, explained Head of UFS Career Services, Belinda Janeke.

Congratulations to the Kovsies top-11 students who made it into the GradStar top-100 programme for 2019!

Each year, 100 South African students are selected through a rigorous four-phase judging process to become part of the GradStar programme. The programme is designed to offer opportunities for employment to previously unrecognised students.

What makes the top 11? 

According to the UFS Head of Career Services, Belinda Janeke, the GradStar programme is all about producing a well-rounded student. Approximately 6 000 applications were received from Kovsies, of which 500 were selected based on a personality test. Another test was given to the 500 students who passed the personality test, after which interviews were conducted to determine the top 100 from the UFS.  

The students who were selected to represent the UFS exhibited the most potential as future leaders in their respective fields. Apart from academic achievement, contestants were evaluated according to their individual soft skills such as motivation, discipline, altruism, and attitude. This combination promised to deliver top candidates for future employers. 

2019 GradStar programme experiences

Throughout the competition, Kovsie contestants were exposed to new people and opportunities to network with various companies in their preferred career fields, where they had the opportunity to share their CVs with potential employers. Contestants were also afforded the opportunity to develop critical problem-solving skills in the world of work. The GradStar top-100 students also have a WhatsApp group where jobs are advertised.

The programme was valuable for the Kovsies; not only did it prepare them for employment, but also provided them with an opportunity for learning and recognising their own strengths and weaknesses as individuals in the working world. 

Congratulations to the Kovsies who made it into the GradStar top 100: 

Mariné du Toit: Bachelor of Social Work
Nyiko Maluleka: Bachelor of Arts, Corporate and Marketing Communication
Bianca Malan: Bachelor of Accounting, Financial Accounting
Boitumelo Mancoe: Master of Business Administration
Kabelo Mashego: Bachelor of Medicine and Bachelor of Surgery (MB ChB)
Kananelo Moletsane: Bachelor of Agriculture
Mudzunga Mukwevho: Bachelor of Accounting, Financial Accounting
Neo Roberts: Bachelor of Science, Information Technology 
Refilwe Maimane: Bachelor of Commerce, Accounting 
Themba Makhoba: Bachelor of Public Administration
Mpolokeng Mmutle: Bachelor of Commerce, Accounting

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept