Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 October 2019 | Story Valentino Ndaba | Photo Valentino Ndaba
Dr Patience book
From left: Prof Melanie Walker (SARChI Chair and Director of Higher Education and Human Development Research Group), Dr Patience Mukwambo (author of the monograph), and Dr Mikateko Hoppener, Senior Researcher in the group.

“A quality higher-education learning experience is a transformative experience for both students and lecturers who develop their minds in criticality, as well as social and self-identity, in addition to other skills and competencies.” This was the message from Dr Patience Mukwambo at the launch of her recently published book – ‘Quality in Higher Education as a Tool for Human Development: Enhancing Teaching and Learning in Zimbabwe’.

The book is a product of her doctoral research and was launched by the office of the SARChI Chair in Higher Education and Human Development, where Dr Mukwambo is a full-time researcher and was introduced at an event held at the Bloemfontein campus of the University of the Free State (UFS) on 21 October 2019. 

Depressing higher-education system

Dr Mukwambo was joined in conversation by Prof Brian Raftopoulos, a Mellon Senior Research Mentor in the Centre for Humanities Research at University of the Western Cape. 

Both scholars testified to the concept of critical thinking, alluding to the depressing state of education in Zimbabwe due to limitations posed by a non-expanding economy and a repressive political space. 

Prof Raftopoulos told the audience the idea of critical thinking has a long genealogy in radical thought which has deepened its roots in modern-day society. 

“What you have seen through the introduction of STEM (Science, Technology, Engineering, and Mathematics), is the increasing idea of functionalising education for a work economy. More often than not, you will hear the state saying it is up to school-leavers to create their own jobs,” said Prof Raftopoulos. According to Dr Mukwambo, part of the challenge is that “critical thinking is omitted on purpose and therefore universities lack a moral compass to work from”.

“While the broader economy might be constraining there are opportunities to develop critical thinking in the classroom, although it might not be uniform across all universities,” said Dr Mukwambo.

Equipping graduates with critical-thinking skills contributes to a range of benefits, such as improved wellbeing, economic outcomes, political engagement, and human capital formation. Quality in teaching and learning is therefore indeed a step in the right direction, towards social justice.


News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept