Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 September 2019 | Story Leonie Bolleurs | Photo Charl Devenish
Jon Jacobson
Delivering the 31st Sophia Gray Memorial Lecture and Exhibition in Bloemfontein, was Jon Jacobson from Metropolis Design in Cape Town.

What is inside and what is outside? What is coming alive in the light? Minimalism. Hugeness. Shadows. Soft. Art. Complex. Conversation. Ambiguity. Clarity. All phrases and words used by the most recent Sophia Gray laureate, Jon Jacobson from Metropolis Design in Cape Town, to describe aspects of his work.

He delivered the 31st Sophia Gray memorial lecture in Bloemfontein. The name of his lecture at this prestigious event, organised by the UUFS Department of Architecture, was in [de] finite. Jacobson is the first graduate in the department’s MArch with Design.

Nature plays a big role in many of his projects, with a blurred distinction between the inside and the outside of the structures he builds. His designs fulfil the desire of a union with nature. 

A detailed investigation

Jacobson creates places and spaces to celebrate being. “Architecture is undeniably art, but it is also embodied in the completeness of the lived moment,” he says. 

Every project starts with a detailed investigation. “What social theory will we engage with? How progressive is it? What attitude will we take to the environment, to the theory of family? What other personal concerns will we be worried about? It is important to engage critically with this information. Important to build a philosophical base for each project,” says Jacobson.

He also believes it is important to consciously ensure that form follows idea with the same intensity that it follows function and that it does not blindly follow other form. 

At Metropolis, Jon and his team are client centred in their approach to design. Jon explains the process: “Some of the content is brought from the client’s personal and social aspiration and some from contemporary architecture culture, but the most potent component is the hidden set of ideas that emerge from our own engagements with the living world such as popular science, geology, art, music, literature, philosophy, theology, mysticism, and many others. And this emerges in the hidden sense of the word, in its architecture content.”

Content approach to design

In house design, Jon categorises the content that informs the architecture of the house: content pertaining to the individual, their philosophy, values and beliefs, content derived from culture, architecture and the arts, passion, religion, politics, and content referring to the natural world and its processes. Content from each of these spheres is present in any of his work. 

Jon says a major implication of a content approach to design is that it requires a design framework that is largely operative at a level of idea rather than at the level of form. This contributes to creating architecture rather than just buildings. 

His design method allows conscious control over the relationship between the ideas, the forms, and the poetics of the projects. “And at any point in the building process, it is possible to trace back and to critically assess whether any particular form is aligning with the core ideas of the project,” Jon indicates. 

Jon’s first taste of grappling with the infinite of architecture was with a garden pavilion he built for rest and relaxation. “For the first time I felt that we integrated planning, content, sight, programme, structure, and materiality into one unified whole that was expressed with a minimum of means and that was more than just the sum of its part,” he states.

He strongly believes that the individual is at the centre of every architectural project. He says the belief systems, type of social needs, family dynamics, physical habits, and spatial practices of their clients need to be investigated in detail in order to facilitate a meaningful spatial experience.

He continues: “We see our role as designers to saturate the environment with the meaning that enhances our clients’ daily experience in every possible way – from the ergonomic and the practical to the spiritual. In the process, the logics and tradition of architecture and the ego of the architect sometimes need to make way for human need and aspiration.”


News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept