Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 September 2019 | Story Leonie Bolleurs | Photo Charl Devenish
Jon Jacobson
Delivering the 31st Sophia Gray Memorial Lecture and Exhibition in Bloemfontein, was Jon Jacobson from Metropolis Design in Cape Town.

What is inside and what is outside? What is coming alive in the light? Minimalism. Hugeness. Shadows. Soft. Art. Complex. Conversation. Ambiguity. Clarity. All phrases and words used by the most recent Sophia Gray laureate, Jon Jacobson from Metropolis Design in Cape Town, to describe aspects of his work.

He delivered the 31st Sophia Gray memorial lecture in Bloemfontein. The name of his lecture at this prestigious event, organised by the UUFS Department of Architecture, was in [de] finite. Jacobson is the first graduate in the department’s MArch with Design.

Nature plays a big role in many of his projects, with a blurred distinction between the inside and the outside of the structures he builds. His designs fulfil the desire of a union with nature. 

A detailed investigation

Jacobson creates places and spaces to celebrate being. “Architecture is undeniably art, but it is also embodied in the completeness of the lived moment,” he says. 

Every project starts with a detailed investigation. “What social theory will we engage with? How progressive is it? What attitude will we take to the environment, to the theory of family? What other personal concerns will we be worried about? It is important to engage critically with this information. Important to build a philosophical base for each project,” says Jacobson.

He also believes it is important to consciously ensure that form follows idea with the same intensity that it follows function and that it does not blindly follow other form. 

At Metropolis, Jon and his team are client centred in their approach to design. Jon explains the process: “Some of the content is brought from the client’s personal and social aspiration and some from contemporary architecture culture, but the most potent component is the hidden set of ideas that emerge from our own engagements with the living world such as popular science, geology, art, music, literature, philosophy, theology, mysticism, and many others. And this emerges in the hidden sense of the word, in its architecture content.”

Content approach to design

In house design, Jon categorises the content that informs the architecture of the house: content pertaining to the individual, their philosophy, values and beliefs, content derived from culture, architecture and the arts, passion, religion, politics, and content referring to the natural world and its processes. Content from each of these spheres is present in any of his work. 

Jon says a major implication of a content approach to design is that it requires a design framework that is largely operative at a level of idea rather than at the level of form. This contributes to creating architecture rather than just buildings. 

His design method allows conscious control over the relationship between the ideas, the forms, and the poetics of the projects. “And at any point in the building process, it is possible to trace back and to critically assess whether any particular form is aligning with the core ideas of the project,” Jon indicates. 

Jon’s first taste of grappling with the infinite of architecture was with a garden pavilion he built for rest and relaxation. “For the first time I felt that we integrated planning, content, sight, programme, structure, and materiality into one unified whole that was expressed with a minimum of means and that was more than just the sum of its part,” he states.

He strongly believes that the individual is at the centre of every architectural project. He says the belief systems, type of social needs, family dynamics, physical habits, and spatial practices of their clients need to be investigated in detail in order to facilitate a meaningful spatial experience.

He continues: “We see our role as designers to saturate the environment with the meaning that enhances our clients’ daily experience in every possible way – from the ergonomic and the practical to the spiritual. In the process, the logics and tradition of architecture and the ego of the architect sometimes need to make way for human need and aspiration.”


News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept