Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 September 2019 | Story Leonie Bolleurs | Photo Charl Devenish
Jon Jacobson
Delivering the 31st Sophia Gray Memorial Lecture and Exhibition in Bloemfontein, was Jon Jacobson from Metropolis Design in Cape Town.

What is inside and what is outside? What is coming alive in the light? Minimalism. Hugeness. Shadows. Soft. Art. Complex. Conversation. Ambiguity. Clarity. All phrases and words used by the most recent Sophia Gray laureate, Jon Jacobson from Metropolis Design in Cape Town, to describe aspects of his work.

He delivered the 31st Sophia Gray memorial lecture in Bloemfontein. The name of his lecture at this prestigious event, organised by the UUFS Department of Architecture, was in [de] finite. Jacobson is the first graduate in the department’s MArch with Design.

Nature plays a big role in many of his projects, with a blurred distinction between the inside and the outside of the structures he builds. His designs fulfil the desire of a union with nature. 

A detailed investigation

Jacobson creates places and spaces to celebrate being. “Architecture is undeniably art, but it is also embodied in the completeness of the lived moment,” he says. 

Every project starts with a detailed investigation. “What social theory will we engage with? How progressive is it? What attitude will we take to the environment, to the theory of family? What other personal concerns will we be worried about? It is important to engage critically with this information. Important to build a philosophical base for each project,” says Jacobson.

He also believes it is important to consciously ensure that form follows idea with the same intensity that it follows function and that it does not blindly follow other form. 

At Metropolis, Jon and his team are client centred in their approach to design. Jon explains the process: “Some of the content is brought from the client’s personal and social aspiration and some from contemporary architecture culture, but the most potent component is the hidden set of ideas that emerge from our own engagements with the living world such as popular science, geology, art, music, literature, philosophy, theology, mysticism, and many others. And this emerges in the hidden sense of the word, in its architecture content.”

Content approach to design

In house design, Jon categorises the content that informs the architecture of the house: content pertaining to the individual, their philosophy, values and beliefs, content derived from culture, architecture and the arts, passion, religion, politics, and content referring to the natural world and its processes. Content from each of these spheres is present in any of his work. 

Jon says a major implication of a content approach to design is that it requires a design framework that is largely operative at a level of idea rather than at the level of form. This contributes to creating architecture rather than just buildings. 

His design method allows conscious control over the relationship between the ideas, the forms, and the poetics of the projects. “And at any point in the building process, it is possible to trace back and to critically assess whether any particular form is aligning with the core ideas of the project,” Jon indicates. 

Jon’s first taste of grappling with the infinite of architecture was with a garden pavilion he built for rest and relaxation. “For the first time I felt that we integrated planning, content, sight, programme, structure, and materiality into one unified whole that was expressed with a minimum of means and that was more than just the sum of its part,” he states.

He strongly believes that the individual is at the centre of every architectural project. He says the belief systems, type of social needs, family dynamics, physical habits, and spatial practices of their clients need to be investigated in detail in order to facilitate a meaningful spatial experience.

He continues: “We see our role as designers to saturate the environment with the meaning that enhances our clients’ daily experience in every possible way – from the ergonomic and the practical to the spiritual. In the process, the logics and tradition of architecture and the ego of the architect sometimes need to make way for human need and aspiration.”


News Archive

Dr Abdon Atangana cements his research globally by solving fractional calculus problem
2014-12-03

 

Dr Abdon Atangana

To publish 29 papers in respected international journals – and all of that in one year – is no mean feat. Postdoctoral researcher Abdon Atangana at the Institute for Groundwater Studies at the University of the Free State (UFS) reached this mark by October 2014, shortly before his 29th birthday.

His latest paper, ‘Modelling the Advancement of the Impurities and the Melted Oxygen concentration within the Scope of Fractional Calculus’, has been accepted for publication by the International Journal of Non-Linear Mechanics.

In previously-published research he solved a problem in the field of fractional calculus by introducing a fractional derivative called ‘Beta-derivative’ and its anti-derivative called ‘Atangana-Beta integral’, thereby cementing his research in this field.

Dr Atangana, originally from Cameroon, received his PhD in Geohydrology at the UFS in 2013. His research interests include:
• the theory of fractional calculus;
• modelling real world problems with fractional order derivatives;
• applications of fractional calculus;
• analytical methods for partial differential equations;
• analytical methods for ordinary differential equations;
• numerical methods for partial and ordinary differential equations; and
• iterative methods and uncertainties modelling.

Dr Atangana says that, “Applied mathematics can be regarded as the bridge between theory and practice. The use of mathematical tools for solving real world problems is as old as creation itself. As written in the book Genesis ‘And God saw the light, that it was good; and divided the light from the darkness’, the word division appears here as the well-known method of separation of variables, this method is usually employed to solve a class of linear partial differential equations”.

“A mathematical model is a depiction of a system using mathematical concepts and language. The procedure of developing a mathematical model is termed mathematical modelling. Mathematical models are used not only in natural sciences, but also in social sciences such as economics, psychology, sociology and political sciences. These models help to explain systems and to study the effects of different components, and to make predictions about behaviours.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept