Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 September 2019 | Story Valentino Ndaba | Photo Valentino Ndaba
Diversity festival
Staff and students come together in celebration at the International Cultural Diversity Festival.


There are 195 countries in the world and the University of the Free State (UFS) officially has a personal relationship with 24 of them. Be it through exchange inbound or outbound programmes or research collaboration, Kovsies is growing its global footprint.

The 2019 International Cultural Diversity Festival brought a mix of music, dance, and poetry to the Bloemfontein Campus on Friday 13 September 2019. The aim of the festival was to recognise, appreciate and celebrate the diverse cultures represented on all our campuses.

Reeling in and rolling out the best talent pool

As stated in the 2018 Internationalisation Report, “Kovsies currently has about 50 international collaboration agreements, and collaboration with 1 584 institutions,” in terms of research. The plan is to widen researchers’ international networks, with a special focus on the African continent.

Finding strength in diversity

“Diversity within groups at the UFS necessitates that we foster a culture of tolerance and a spirit of mutual acceptance and appreciation at our university,” says Chevon Slambee, Chief Officer at the Office for International Affairs (OIA).

Slambee spoke on behalf of the Vice-Rector: Research and Internationalisation, Prof Corli Witthuhn, and the Director of the OIA, Cornelius Hagenmeier, commending the diversity reflected in our international students and staff community.

She mirrored the views of the Kovsie community at large in calling for an end to division and violence based on “othering”. Referring to the upsurge in violence directed against women and people from other countries that we saw in South Africa last month, Slambee remarked: “We are shocked and speechless in light of these events, which are contrary to the spirit of embracing one another’s humanity, which we believe in and want to promote.”

Content photo International
The International Cultural Diversity was filled with entertainment.

A coming together

The festival theme this year was the Boma which is a traditional space created back in the day where a community would sit around the fire, drumming, singing, dancing and listening to tales told by the elders. The UFS strives to be a similar space – growing the current number of international relationships and immersing the institution in the global village – the African way.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept