Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 September 2019 | Story Amanda Thongha | Photo Charl Devenish
Dr Gwande
Dr Victor Gwande

Attaining his master’s degree cum laude, completing a PhD degree, and publishing in top academic journals, University of the Free State (UFS) academic, Dr Victor Gwande, has been an outstanding researcher throughout his career.

Adding to his list of notable achievements, the postdoctoral research fellow in the International Studies Group has just been awarded a fellowship at Princeton University, one of the top universities in the world. The US institution was recently ranked sixth in the Times Higher Education World University Rankings 2020.

As a fellow of the Institute for Advanced Study at Princeton, Dr Gwande will spend two weeks on the Ivy League university’s New Jersey campus in 2020. This will be followed by a weeklong session at one of two collaborating institutions in South Africa and the US, with continuous communication facilitated among selected scholars throughout a two-year period. 

Flying high the flag of the African academy
Dr Gwande believes the fellowship will expose him to new intellectual traditions and perspectives. “It will help me create international academic networks across continents, as I seek to put my name out there as an internationally recognised scholar.”

With his research interests in economic and business history of Southern Africa, Dr Gwande says he wishes to become “a great scholar of African economic history, flying high the flag of the African academy, as well as training and producing young scholars for the academy”.

Working with some of the world’s top minds at Princeton University, there will be much to focus on.

“I will be researching, writing, and presenting my research project in which I use the case study of the Anglo American Corporation to look at the histories of capitalism and to understand how monopoly capitalism shaped economic trajectories of Zimbabwe and the broader Southern African region.”

Longer-term plans include completing his monograph stemming from his PhD thesis.

There are many people to thank for his journey from the UFS to Princeton, and the scholar draws attention to some of those who have influenced him. 

“God and my family. But in my career, quite a number of people and institutions have really moulded me; the International Studies Group under Prof Ian Phimister has given me an environment to flourish in my young career.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept