Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 September 2019 | Story Amanda Thongha | Photo Charl Devenish
Dr Gwande
Dr Victor Gwande

Attaining his master’s degree cum laude, completing a PhD degree, and publishing in top academic journals, University of the Free State (UFS) academic, Dr Victor Gwande, has been an outstanding researcher throughout his career.

Adding to his list of notable achievements, the postdoctoral research fellow in the International Studies Group has just been awarded a fellowship at Princeton University, one of the top universities in the world. The US institution was recently ranked sixth in the Times Higher Education World University Rankings 2020.

As a fellow of the Institute for Advanced Study at Princeton, Dr Gwande will spend two weeks on the Ivy League university’s New Jersey campus in 2020. This will be followed by a weeklong session at one of two collaborating institutions in South Africa and the US, with continuous communication facilitated among selected scholars throughout a two-year period. 

Flying high the flag of the African academy
Dr Gwande believes the fellowship will expose him to new intellectual traditions and perspectives. “It will help me create international academic networks across continents, as I seek to put my name out there as an internationally recognised scholar.”

With his research interests in economic and business history of Southern Africa, Dr Gwande says he wishes to become “a great scholar of African economic history, flying high the flag of the African academy, as well as training and producing young scholars for the academy”.

Working with some of the world’s top minds at Princeton University, there will be much to focus on.

“I will be researching, writing, and presenting my research project in which I use the case study of the Anglo American Corporation to look at the histories of capitalism and to understand how monopoly capitalism shaped economic trajectories of Zimbabwe and the broader Southern African region.”

Longer-term plans include completing his monograph stemming from his PhD thesis.

There are many people to thank for his journey from the UFS to Princeton, and the scholar draws attention to some of those who have influenced him. 

“God and my family. But in my career, quite a number of people and institutions have really moulded me; the International Studies Group under Prof Ian Phimister has given me an environment to flourish in my young career.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept