Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2019 | Story Xolisa Mnukwa | Photo Xolisa Mnukwa
Shannon Arnold and Samkezi Mbalane
Shannon Arnold (left) and Samkezi Mbalane (right), the 2019 UFS recipients of the prestigious International Abe Bailey Travel Bursary.

The University of the Free State (UFS) has selected MPhil (African Studies) student and self-proclaimed ‘radical feminist’, Shannon Arnold, and former Golden Key UFS Qwaqwa Campus Chapter President and Political Studies and Governance honours student, Samkezi Mbalane, to represent the institution this year on the Abe Bailey Travel Bursary tour

The Abe Bailey Travel Bursary is a leadership-development programme that honours and targets university students or junior lecturers with a strong academic background, and who have shown exceptional qualities of leadership and service during their university careers as well as in a wider social context. Recipients of the bursary are expected to function as an integral part of a select and highly skilled group of individuals who will be embarking on a five-stage tour in December, starting in Cape Town (South Africa) and finishing in London (United Kingdom).

“Success comes from a feeling of satisfaction in what I have done for myself” – Shannon Arnold

Shannon Arnold, who is originally from Grahamstown, Eastern Cape, completed her undergraduate and honours studies in Political and International Studies and English Literature at Rhodes University. She moved to the UFS and is currently completing her transdisciplinary MPhil in African Studies, focused on Peace and Conflict in Post-conflict African Societies from a gendered perspective. 

“Moving to the Free State was an interesting cultural transition,” Arnold remarked. 
She further expressed how “pleasantly enlightened” she was by the UFS’s active and direct approach to transformation, and how it allowed her to spearhead and coordinate crucial student-movement initiatives such as the total shutdown protest which saw women and students march from the UFS Bloemfontein Campus to the Supreme Court of Appeal in 2018. Arnold believes that her passion, work, and experiences with community and service-based organisations against South Africa’s plight of gender-based violence has branded her a leader and qualified her for becoming an ‘Abe’.

Arnold grew up in a community-minded family and has thus been aligned with politics from a very young age. She is inspired by the thought of manifesting a reality where women in South Africa are able to pursue their own choices. She looks forward to exposing herself to foreign cultures on the tour to the UK, engaging with people who have like-minded convictions. 

“The desire and compassion to motivate and uplift others is what inspires me.”  – Samkezi Mbalane

Eastern Cape, Mount Fletcher-born Samkezi Mbalane, who graduated from the UFS with his undergraduate degree in Political Studies and Governance (Cum Laude), labels his life journey as ‘very difficult, yet fascinating’. 

Having been raised by a struggling single mother, he reflects on being dependant on other people in his immediate community for basic needs. He lived in a foster home for three years (Grade 10 to 12) as a means of survival. Mbalane explained that such experiences motivated him to pursue a career in politics, as he dreams of playing a pivotal role in the creation and implementation of South African governmental policies that will one day effectively benefit the poor.

Mbalane believes his claim to leadership came through ‘hard work and persistence’. He has served in various leadership positions, including President of the Golden Key Society UFS Qwaqwa Campus Chapter, Prime at Steve Biko Residence, active member of the Institute for Reconciliation and Social Justice, Enactus, and the Secretary General of the Student Parliament. Mbalane deemed being selected an ‘Abe’ as an “iconic opportunity for all aspirant leaders in South Africa.” 

He looks forward to working with people from different cultural backgrounds and career fields, but mostly, to seeing the world outside South Africa from a unique perspective.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept