Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 September 2019 | Story Valentino Ndaba | Photo Charl Devenish
Arbor tree plant
To celebrate National Arbor Week the University of the Free State has embarked on a drive to plant 150 trees during the month of September

If you’ve wondered whether Arbor Month was important, you only have to look at the destruction and long-term damage that deforestation causes to the environment and the world’s inhabitants. To observe National Arbor Month, the University of the Free State’s has (UFS) kick-started a drive to plant 150 trees during the month of September.

To launch this initiative, the Rector and Vice-Chancellor, Prof Francis Petersen, alongside members of the rectorate, assisted the University Estates team in planting the first 10 of 100 trees at the Bloemfontein Campus on Wednesday 4 September 2019. A total of 50 trees will be planted on the Qwaqwa Campus.

Towards a sustainable future

“We have gone through periods of drought in the Free State that have severely impacted not only the plants but the trees on our campuses. The idea is to emphasise sustainability, and as a university, we believe that sustainability is important. As an education institution, we have to look at the generations that are still to come to our campuses,” said Prof Petersen.

He urged the Kovsie community to ensure that all practices across the campuses are linked to global standards of sustainability. “As we develop over the next couple of months and years, we will get much closer alignment between what we are doing as a university and the Sustainable Development Goals.

Drought-resistant man-made forests

Clusters of mini forests across the campuses will be created with a variety of trees including the karee, white karee, white stinkwood, and wild olive. These indigenous trees can adapt well to different soils including those that are poorly drained.

Celebrating Arbor Week

This year’s campaign was held under the theme Forests and Sustainable Cities. As part of the celebration, University Estates made a commitment to the environment by embarking on the green initiative which includes other project such as the upgrade of Red Square on the Bloemfontein Campus.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept