Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2019 | Story Valentino Ndaba
Rebecca Swartz
Researcher delves into the complexity of the British colonial system’s influence on the education of indigenous South African children

Tracking how the government’s involvement in indigenous children’s education changed over time is the subject matter of Dr Rebecca Swartz’s new book, Education and Empire: Children, Race and Humanitarianism in the British Settler Colonies, 1833-1880. Dr Swartz, a Postdoctoral Research Fellow in the University of the Free State’s International Studies Group, published this monograph four years after completing her PhD.

As a historian of British imperialism in the 19th century and focusing on the intersections between childhood, race, and humanitarianism, Dr Swartz’s research is imperative in understanding the history of the South African education system. Her study draws on materials from the Caribbean and Australia, as well South African archives.

Education as a tool to carve equality
The book is a comparative study which addresses how the government, researchers, missionaries and members of the public viewed the function of education in the 19th-century British Empire. The book tackles a period during which changing conceptions of childhood, the functions of education, responsibilities of government, and the reach of governing indigenous peoples intersected.

Underlying the question of education’s function “were anxieties regarding the status of indigenous people in newly colonised territories: the successful education of their children could show their potential for equality”, says Dr Swartz. While the colonial government and missionaries often agreed that some education should be given to indigenous children, they  wanted to use this to further their own aims which included religious conversion and creating a labour force. Indigenous parents and children themselves were rarely consulted on what they wanted from schooling. 

Schools and race

According to the historical archives sifted through by Swartz, substantial data was gathered which point to the fact that schools played a major role in the production and reproduction of racial differences in the colonies of settlement. 

A shift in thinking took place between 1833 and 1880, both in Britain and the Empire. Education was increasingly seen as a government responsibility. With this new outlook childhood was approached as a time to make interventions into indigenous people’s lives. “This period also saw shifts in thinking about race,” says Dr Swartz. Remnants of that thinking can be seen in present-day South Africa. 

Considering the bigger picture

When Dr Swartz began her research at the University of London in 2012, her main focus was to provide a broader understanding which transcended histories of either the development of ‘white’ schooling for settler children or Marxist histories of education of the apartheid period. “I was interested in finding out more about education for indigenous children during the 19th century, often in the early years of colonial settlement, an area that had received fairly little attention in the literature.”

Interested in a copy of the book?
Click here for a discount flyer for the book. Copies are also available on Amazon.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept