Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2019 | Story Valentino Ndaba
Rebecca Swartz
Researcher delves into the complexity of the British colonial system’s influence on the education of indigenous South African children

Tracking how the government’s involvement in indigenous children’s education changed over time is the subject matter of Dr Rebecca Swartz’s new book, Education and Empire: Children, Race and Humanitarianism in the British Settler Colonies, 1833-1880. Dr Swartz, a Postdoctoral Research Fellow in the University of the Free State’s International Studies Group, published this monograph four years after completing her PhD.

As a historian of British imperialism in the 19th century and focusing on the intersections between childhood, race, and humanitarianism, Dr Swartz’s research is imperative in understanding the history of the South African education system. Her study draws on materials from the Caribbean and Australia, as well South African archives.

Education as a tool to carve equality
The book is a comparative study which addresses how the government, researchers, missionaries and members of the public viewed the function of education in the 19th-century British Empire. The book tackles a period during which changing conceptions of childhood, the functions of education, responsibilities of government, and the reach of governing indigenous peoples intersected.

Underlying the question of education’s function “were anxieties regarding the status of indigenous people in newly colonised territories: the successful education of their children could show their potential for equality”, says Dr Swartz. While the colonial government and missionaries often agreed that some education should be given to indigenous children, they  wanted to use this to further their own aims which included religious conversion and creating a labour force. Indigenous parents and children themselves were rarely consulted on what they wanted from schooling. 

Schools and race

According to the historical archives sifted through by Swartz, substantial data was gathered which point to the fact that schools played a major role in the production and reproduction of racial differences in the colonies of settlement. 

A shift in thinking took place between 1833 and 1880, both in Britain and the Empire. Education was increasingly seen as a government responsibility. With this new outlook childhood was approached as a time to make interventions into indigenous people’s lives. “This period also saw shifts in thinking about race,” says Dr Swartz. Remnants of that thinking can be seen in present-day South Africa. 

Considering the bigger picture

When Dr Swartz began her research at the University of London in 2012, her main focus was to provide a broader understanding which transcended histories of either the development of ‘white’ schooling for settler children or Marxist histories of education of the apartheid period. “I was interested in finding out more about education for indigenous children during the 19th century, often in the early years of colonial settlement, an area that had received fairly little attention in the literature.”

Interested in a copy of the book?
Click here for a discount flyer for the book. Copies are also available on Amazon.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept