Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 September 2019 | Story Ruan Bruwer | Photo Varsity Sports
Netball
Jana Scholtz, goal defender and playing in her first year as a regular starter, has been a solid performer for the Kovsie netball team in Varsity Netball.

The building blocks are starting to form a solid basis from where Kovsies can launch an attack to defend the Varsity Netball title they won in 2018. This is according to Karin Venter, one of the team’s assistant coaches.

After losing their first encounter to Tuks, they registered wins over the University of Johannesburg, Tshwane University of Technology, and the North-West University. The match against the Maties in Bloemfontein on 23 September 2019 – the last in the group stage, should determine which of the two teams will book a home semi-final along with Tuks.

“Yes, that is the crucial one,” said Venter, the team’s defensive coach. Her counterpart at the Maties is Adéle Niemand, with whom Venter combined as defenders at Kovsies for several matches in the mid-2000s. Apart from the Maties, the women of the University of the Free State still have to face the Madibaz and the University of the Western Cape (both in Pretoria on 15 and 16 September 2019).

“The combinations are starting to form a unit and our confidence is on the increase. Now we are looking for consistency in our performances.”

According to Venter, they were hit hard by goalkeeper Ané Retief’s injury, which kept her out of the first two matches. This meant that they had to start against Tuks with a first-year student, Chanel Vrey.

“It was tough, but I’m impressed with the way in which she, Ancia Pienaar, and Jana Scholtz – who are all youngsters – stepped up.”

Venter is responsible for the analyses and recons to assist players.

“The programme we are using provides us with all the required footage. You can make notes on it and send these clips to players, which means you don’t have to sit next to a player to explain something. We also provide them with notes and sketches of opponents’ playing patterns, which they must work through as part of their preparation.”

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept