Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 September 2019 | Story Ruan Bruwer | Photo Varsity Sports
Netball
Jana Scholtz, goal defender and playing in her first year as a regular starter, has been a solid performer for the Kovsie netball team in Varsity Netball.

The building blocks are starting to form a solid basis from where Kovsies can launch an attack to defend the Varsity Netball title they won in 2018. This is according to Karin Venter, one of the team’s assistant coaches.

After losing their first encounter to Tuks, they registered wins over the University of Johannesburg, Tshwane University of Technology, and the North-West University. The match against the Maties in Bloemfontein on 23 September 2019 – the last in the group stage, should determine which of the two teams will book a home semi-final along with Tuks.

“Yes, that is the crucial one,” said Venter, the team’s defensive coach. Her counterpart at the Maties is Adéle Niemand, with whom Venter combined as defenders at Kovsies for several matches in the mid-2000s. Apart from the Maties, the women of the University of the Free State still have to face the Madibaz and the University of the Western Cape (both in Pretoria on 15 and 16 September 2019).

“The combinations are starting to form a unit and our confidence is on the increase. Now we are looking for consistency in our performances.”

According to Venter, they were hit hard by goalkeeper Ané Retief’s injury, which kept her out of the first two matches. This meant that they had to start against Tuks with a first-year student, Chanel Vrey.

“It was tough, but I’m impressed with the way in which she, Ancia Pienaar, and Jana Scholtz – who are all youngsters – stepped up.”

Venter is responsible for the analyses and recons to assist players.

“The programme we are using provides us with all the required footage. You can make notes on it and send these clips to players, which means you don’t have to sit next to a player to explain something. We also provide them with notes and sketches of opponents’ playing patterns, which they must work through as part of their preparation.”

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept