Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 September 2019 | Story Ruan Bruwer | Photo Varsity Sports
Netball
Jana Scholtz, goal defender and playing in her first year as a regular starter, has been a solid performer for the Kovsie netball team in Varsity Netball.

The building blocks are starting to form a solid basis from where Kovsies can launch an attack to defend the Varsity Netball title they won in 2018. This is according to Karin Venter, one of the team’s assistant coaches.

After losing their first encounter to Tuks, they registered wins over the University of Johannesburg, Tshwane University of Technology, and the North-West University. The match against the Maties in Bloemfontein on 23 September 2019 – the last in the group stage, should determine which of the two teams will book a home semi-final along with Tuks.

“Yes, that is the crucial one,” said Venter, the team’s defensive coach. Her counterpart at the Maties is Adéle Niemand, with whom Venter combined as defenders at Kovsies for several matches in the mid-2000s. Apart from the Maties, the women of the University of the Free State still have to face the Madibaz and the University of the Western Cape (both in Pretoria on 15 and 16 September 2019).

“The combinations are starting to form a unit and our confidence is on the increase. Now we are looking for consistency in our performances.”

According to Venter, they were hit hard by goalkeeper Ané Retief’s injury, which kept her out of the first two matches. This meant that they had to start against Tuks with a first-year student, Chanel Vrey.

“It was tough, but I’m impressed with the way in which she, Ancia Pienaar, and Jana Scholtz – who are all youngsters – stepped up.”

Venter is responsible for the analyses and recons to assist players.

“The programme we are using provides us with all the required footage. You can make notes on it and send these clips to players, which means you don’t have to sit next to a player to explain something. We also provide them with notes and sketches of opponents’ playing patterns, which they must work through as part of their preparation.”

News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept