Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2019 | Story Xolisa Mnukwa | Photo Barend Nagel
Prof Puleng LenkaBula
“I want to establish a paradigm shift from community engagement to engaged scholarship, which will transfer science between communities and form reciprocal collaborations in order to create new knowledge, research niche areas, influences, and support systems to aid innovative and progressive teaching and learning processes at the UFS.” – Prof LenkaBula

The University of the Free State (UFS) Vice-Rector: Institutional Change, Student Affairs, and Community Engagement, Prof Puleng LenkaBula, recently visited the Fulda University of Applied Sciences in Germany to discuss a possible future collaboration between the two institutions.

This was inspired by their multidisciplinary approach to higher-education courses, which she aims to facilitate at the UFS in order to pioneer critical thinking among students to ultimately bring about effective and innovative societal problem-solving in South Africa.

Fulda University is an exceptional higher-education institution with the ability to develop and transform itself to purposefully improve its infrastructure, the quality of students, and studies offered by the university. Their different degrees are structured to intersect with the requirements of the progressive European economic environment.

According to Prof LenkaBula, Fulda University is an outstanding institution specialising in applied sciences and theoretical studies, which set them apart from other universities in the advanced European higher-education system.

Prof LenkaBula believes that the prospect of developing joint master’s and/or doctoral degrees between the UFS and Fulda University would expose UFS students to high-quality international higher-education systems. This will ensure that our students are provided with essential skills to become globally competitive and relevant in their designated career fields, and to become strong contenders in an environment characterised by globalisation and the 4th Industrial Revolution (4IR).
She referred to the global exchange of knowledge systems between the UFS and Fulda University as an opportunity for the UFS to improve the university’s global rankings through learning and participating in international collaborative approaches in higher education. 

“In order for our university to cease being seen as an ivory tower, it must be involved in producing knowledge that is beneficial to socio-economic and political development – not only for South Africa, but also for the rest of the world,” said Prof LenkaBula.


News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept