Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2019 | Story Xolisa Mnukwa | Photo Barend Nagel
Prof Puleng LenkaBula
“I want to establish a paradigm shift from community engagement to engaged scholarship, which will transfer science between communities and form reciprocal collaborations in order to create new knowledge, research niche areas, influences, and support systems to aid innovative and progressive teaching and learning processes at the UFS.” – Prof LenkaBula

The University of the Free State (UFS) Vice-Rector: Institutional Change, Student Affairs, and Community Engagement, Prof Puleng LenkaBula, recently visited the Fulda University of Applied Sciences in Germany to discuss a possible future collaboration between the two institutions.

This was inspired by their multidisciplinary approach to higher-education courses, which she aims to facilitate at the UFS in order to pioneer critical thinking among students to ultimately bring about effective and innovative societal problem-solving in South Africa.

Fulda University is an exceptional higher-education institution with the ability to develop and transform itself to purposefully improve its infrastructure, the quality of students, and studies offered by the university. Their different degrees are structured to intersect with the requirements of the progressive European economic environment.

According to Prof LenkaBula, Fulda University is an outstanding institution specialising in applied sciences and theoretical studies, which set them apart from other universities in the advanced European higher-education system.

Prof LenkaBula believes that the prospect of developing joint master’s and/or doctoral degrees between the UFS and Fulda University would expose UFS students to high-quality international higher-education systems. This will ensure that our students are provided with essential skills to become globally competitive and relevant in their designated career fields, and to become strong contenders in an environment characterised by globalisation and the 4th Industrial Revolution (4IR).
She referred to the global exchange of knowledge systems between the UFS and Fulda University as an opportunity for the UFS to improve the university’s global rankings through learning and participating in international collaborative approaches in higher education. 

“In order for our university to cease being seen as an ivory tower, it must be involved in producing knowledge that is beneficial to socio-economic and political development – not only for South Africa, but also for the rest of the world,” said Prof LenkaBula.


News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept