Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 September 2019 | Story Rulanzen Martin | Photo Rulanzen Martin
Lingustics
Delegates at the workshop were provided opportunities that many larger conferences do not offer.

The growing body of work examining microvariation in African languages prompted Dr Kristina Riedel and Dr Hannah Gibson, from the University of Essex and research fellow, to work on a research project, “Variation in Sesotho and Setswana as spoken in the Free State”, to document the dialectal variation in the languages as it is spoken in the province. 

“Dr Gibson and I have a joint research project which is funded by a Newton British Academy mobility grant,” says Dr Riedel, Head of the Department of Linguistic and Language Practice at the University of the Free State (UFS).

The duo hosted a workshop on morphosyntactic microvariation (small structural differences that can be observed between closely related languages or dialects) on the UFS Bloemfontein Campus, as part of the Newton Fund research project.  

Research focus on dialectal variation 

Dr Riedel says there has been some linguistic work on both of these languages. “But for Sesotho, linguists have noted that there is no dialectal variation. This seems hard to believe given the size of the population who speak the language,” she says. 

They are looking at speakers in the Free State province for differences in both languages. Speakers themselves also report awareness of dialectal differences and variation between different regions. “We’re also interested in whether they have influenced each other – particularly in places where people speak both of these languages on a day-to-day basis, such as Thaba ’Nchu and Bloemfontein,” Dr Riedel says.

Dr Riedel believes that in the context of an African university it is important to contribute to the development, teaching and support of African languages. “Research on African languages can play an important part of this picture. Furthering our knowledge and understanding of African languages from a linguistic perspective also contributes to our understanding of the world’s languages and linguistic diversity.” 

Workshop creates space for training and skill sharing

The aim of the workshop was to bring together researchers, students and language practitioners to “provide them with some of the insights and training that is helpful when looking at morphosyntactic microvariation”, Dr Riedel says.

The workshop was conducted in two sets. At the first workshop the emphasis was on training and sharing of skills and the second part focused on more research-related presentations. 

The workshop, which took place on 19 July 2019, was attended by delegates from numerous local institutions (Rhodes University, University of the Western Cape and Stellenbosch University) as well as universities in the rest of Africa including the University of Malawi, Dar es Salaam University College of Education and Makerere University in Uganda. 

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept