Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 September 2019 | Story Rulanzen Martin | Photo Rulanzen Martin
Lingustics
Delegates at the workshop were provided opportunities that many larger conferences do not offer.

The growing body of work examining microvariation in African languages prompted Dr Kristina Riedel and Dr Hannah Gibson, from the University of Essex and research fellow, to work on a research project, “Variation in Sesotho and Setswana as spoken in the Free State”, to document the dialectal variation in the languages as it is spoken in the province. 

“Dr Gibson and I have a joint research project which is funded by a Newton British Academy mobility grant,” says Dr Riedel, Head of the Department of Linguistic and Language Practice at the University of the Free State (UFS).

The duo hosted a workshop on morphosyntactic microvariation (small structural differences that can be observed between closely related languages or dialects) on the UFS Bloemfontein Campus, as part of the Newton Fund research project.  

Research focus on dialectal variation 

Dr Riedel says there has been some linguistic work on both of these languages. “But for Sesotho, linguists have noted that there is no dialectal variation. This seems hard to believe given the size of the population who speak the language,” she says. 

They are looking at speakers in the Free State province for differences in both languages. Speakers themselves also report awareness of dialectal differences and variation between different regions. “We’re also interested in whether they have influenced each other – particularly in places where people speak both of these languages on a day-to-day basis, such as Thaba ’Nchu and Bloemfontein,” Dr Riedel says.

Dr Riedel believes that in the context of an African university it is important to contribute to the development, teaching and support of African languages. “Research on African languages can play an important part of this picture. Furthering our knowledge and understanding of African languages from a linguistic perspective also contributes to our understanding of the world’s languages and linguistic diversity.” 

Workshop creates space for training and skill sharing

The aim of the workshop was to bring together researchers, students and language practitioners to “provide them with some of the insights and training that is helpful when looking at morphosyntactic microvariation”, Dr Riedel says.

The workshop was conducted in two sets. At the first workshop the emphasis was on training and sharing of skills and the second part focused on more research-related presentations. 

The workshop, which took place on 19 July 2019, was attended by delegates from numerous local institutions (Rhodes University, University of the Western Cape and Stellenbosch University) as well as universities in the rest of Africa including the University of Malawi, Dar es Salaam University College of Education and Makerere University in Uganda. 

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept