Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 September 2019 | Story Rulanzen Martin | Photo Rulanzen Martin
Lingustics
Delegates at the workshop were provided opportunities that many larger conferences do not offer.

The growing body of work examining microvariation in African languages prompted Dr Kristina Riedel and Dr Hannah Gibson, from the University of Essex and research fellow, to work on a research project, “Variation in Sesotho and Setswana as spoken in the Free State”, to document the dialectal variation in the languages as it is spoken in the province. 

“Dr Gibson and I have a joint research project which is funded by a Newton British Academy mobility grant,” says Dr Riedel, Head of the Department of Linguistic and Language Practice at the University of the Free State (UFS).

The duo hosted a workshop on morphosyntactic microvariation (small structural differences that can be observed between closely related languages or dialects) on the UFS Bloemfontein Campus, as part of the Newton Fund research project.  

Research focus on dialectal variation 

Dr Riedel says there has been some linguistic work on both of these languages. “But for Sesotho, linguists have noted that there is no dialectal variation. This seems hard to believe given the size of the population who speak the language,” she says. 

They are looking at speakers in the Free State province for differences in both languages. Speakers themselves also report awareness of dialectal differences and variation between different regions. “We’re also interested in whether they have influenced each other – particularly in places where people speak both of these languages on a day-to-day basis, such as Thaba ’Nchu and Bloemfontein,” Dr Riedel says.

Dr Riedel believes that in the context of an African university it is important to contribute to the development, teaching and support of African languages. “Research on African languages can play an important part of this picture. Furthering our knowledge and understanding of African languages from a linguistic perspective also contributes to our understanding of the world’s languages and linguistic diversity.” 

Workshop creates space for training and skill sharing

The aim of the workshop was to bring together researchers, students and language practitioners to “provide them with some of the insights and training that is helpful when looking at morphosyntactic microvariation”, Dr Riedel says.

The workshop was conducted in two sets. At the first workshop the emphasis was on training and sharing of skills and the second part focused on more research-related presentations. 

The workshop, which took place on 19 July 2019, was attended by delegates from numerous local institutions (Rhodes University, University of the Western Cape and Stellenbosch University) as well as universities in the rest of Africa including the University of Malawi, Dar es Salaam University College of Education and Makerere University in Uganda. 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept