Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 September 2019 | Story Rulanzen Martin | Photo Rulanzen Martin
Lingustics
Delegates at the workshop were provided opportunities that many larger conferences do not offer.

The growing body of work examining microvariation in African languages prompted Dr Kristina Riedel and Dr Hannah Gibson, from the University of Essex and research fellow, to work on a research project, “Variation in Sesotho and Setswana as spoken in the Free State”, to document the dialectal variation in the languages as it is spoken in the province. 

“Dr Gibson and I have a joint research project which is funded by a Newton British Academy mobility grant,” says Dr Riedel, Head of the Department of Linguistic and Language Practice at the University of the Free State (UFS).

The duo hosted a workshop on morphosyntactic microvariation (small structural differences that can be observed between closely related languages or dialects) on the UFS Bloemfontein Campus, as part of the Newton Fund research project.  

Research focus on dialectal variation 

Dr Riedel says there has been some linguistic work on both of these languages. “But for Sesotho, linguists have noted that there is no dialectal variation. This seems hard to believe given the size of the population who speak the language,” she says. 

They are looking at speakers in the Free State province for differences in both languages. Speakers themselves also report awareness of dialectal differences and variation between different regions. “We’re also interested in whether they have influenced each other – particularly in places where people speak both of these languages on a day-to-day basis, such as Thaba ’Nchu and Bloemfontein,” Dr Riedel says.

Dr Riedel believes that in the context of an African university it is important to contribute to the development, teaching and support of African languages. “Research on African languages can play an important part of this picture. Furthering our knowledge and understanding of African languages from a linguistic perspective also contributes to our understanding of the world’s languages and linguistic diversity.” 

Workshop creates space for training and skill sharing

The aim of the workshop was to bring together researchers, students and language practitioners to “provide them with some of the insights and training that is helpful when looking at morphosyntactic microvariation”, Dr Riedel says.

The workshop was conducted in two sets. At the first workshop the emphasis was on training and sharing of skills and the second part focused on more research-related presentations. 

The workshop, which took place on 19 July 2019, was attended by delegates from numerous local institutions (Rhodes University, University of the Western Cape and Stellenbosch University) as well as universities in the rest of Africa including the University of Malawi, Dar es Salaam University College of Education and Makerere University in Uganda. 

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept