Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 September 2019 | Story Rulanzen Martin | Photo Rulanzen Martin
Lingustics
Delegates at the workshop were provided opportunities that many larger conferences do not offer.

The growing body of work examining microvariation in African languages prompted Dr Kristina Riedel and Dr Hannah Gibson, from the University of Essex and research fellow, to work on a research project, “Variation in Sesotho and Setswana as spoken in the Free State”, to document the dialectal variation in the languages as it is spoken in the province. 

“Dr Gibson and I have a joint research project which is funded by a Newton British Academy mobility grant,” says Dr Riedel, Head of the Department of Linguistic and Language Practice at the University of the Free State (UFS).

The duo hosted a workshop on morphosyntactic microvariation (small structural differences that can be observed between closely related languages or dialects) on the UFS Bloemfontein Campus, as part of the Newton Fund research project.  

Research focus on dialectal variation 

Dr Riedel says there has been some linguistic work on both of these languages. “But for Sesotho, linguists have noted that there is no dialectal variation. This seems hard to believe given the size of the population who speak the language,” she says. 

They are looking at speakers in the Free State province for differences in both languages. Speakers themselves also report awareness of dialectal differences and variation between different regions. “We’re also interested in whether they have influenced each other – particularly in places where people speak both of these languages on a day-to-day basis, such as Thaba ’Nchu and Bloemfontein,” Dr Riedel says.

Dr Riedel believes that in the context of an African university it is important to contribute to the development, teaching and support of African languages. “Research on African languages can play an important part of this picture. Furthering our knowledge and understanding of African languages from a linguistic perspective also contributes to our understanding of the world’s languages and linguistic diversity.” 

Workshop creates space for training and skill sharing

The aim of the workshop was to bring together researchers, students and language practitioners to “provide them with some of the insights and training that is helpful when looking at morphosyntactic microvariation”, Dr Riedel says.

The workshop was conducted in two sets. At the first workshop the emphasis was on training and sharing of skills and the second part focused on more research-related presentations. 

The workshop, which took place on 19 July 2019, was attended by delegates from numerous local institutions (Rhodes University, University of the Western Cape and Stellenbosch University) as well as universities in the rest of Africa including the University of Malawi, Dar es Salaam University College of Education and Makerere University in Uganda. 

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept