Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 September 2019 | Story Zamuxolo Feni | Photo Liza Crawley
Read More Photo SANRAL
SANRAL Chief Executive Officer Skhumbuzo Macozoma and UFS Rector and Vice-Chancellor Prof Francis Petersen cutting a cake to mark 10 years of collaboration between the two institutions.

The Science-for-the-Future (S4F) programme is fundamental to generating the required pipeline for technologically skilled entrepreneurs and workers by focusing on Mathematics and Science support to learners, teachers, and parents.

This is according to the South African National Roads Agency Limited (SANRAL) Chief Executive Officer, Skhumbuzo Macozoma, who delivered a keynote address at the Annual Science for the Future Summit held at the University of the Free State (UFS) on 20 September.

The S4F is a partnership between the UFS and SANRAL, with the fundamental purpose to train Maths and Science teachers and to support learners and parents. The programme has now been extended to six other universities, namely Nelson Mandela University and Walter Sisulu University in the Eastern Cape; the University of Limpopo, University of KwaZulu-Natal, and the two recently established universities, the University of Mpumalanga and the Sol Plaatje University in the Northern Cape.

Dr Cobus van Breda, the Programme Director for the UFS S4S, said they developed the Family Math and Key Concepts in Science programmes to address issues that prevent learners from excelling in these critical subjects. It seeks to improve the content knowledge of teachers and provide them with more skills-teaching resources.

Macozoma said: “I am proud and deeply honoured to stand before you today in the strength of a successful 10-year partnership with the University of the Free State which we are celebrating here today, together with the hosting of the Annual Science for the Future Summit.”  More than 300 teachers attended the summit.

Planning for the future

He indicated that SANRAL's long-term strategy, Horizon 2030, instructed the development of a new human-resources strategy for the organisation, which has identified three pillars that underpin SANRAL's human-capital development initiatives, namely people, skills, and performance.

“The strategic opportunities identified by SANRAL include capitalising on the opportunity presented by the digital revolution to create a new generation of technologically skilled entrepreneurs and workers; returning to good and ethical governance in both the public and private sectors; bringing back the prestige of serving the citizens of SA through state institutions: fashioning SANRAL as an employer of the future and delivering technical skills to address the glaring skills gap in engineering and other domains,” he said.

Macozoma stated that SANRAL has also decided to review and rationalise its support to institutions of higher learning in order to grow the footprint of its support programmes, increase the impact, and ensure equity.

Beyond this, he stated that SANRAL wanted to ensure that learners are equipped with fundamental competencies that are essential to complement academic teachings, including critical thinking, creativity, collaboration, communication, information literacy, media literacy, technology literacy, and flexibility.         

Facing 4IR head on

Macozoma said the most important characteristics of the Fourth Industrial Revolution that must be taken into consideration by those who aim to survive it, drive it, and benefit from it, is a smart customer – who is informed and dictates what services he/she wants and how they should be delivered; technology at the fingertips – which will enable rapid, real-time, borderless services to information, services, and technology as an enabler – bringing efficiency to logistics, mobility, medicine, education, industries, the economy, the military, global trade, and politics.  

Working closely with school and society

UFS Rector and Vice-Chancellor, Prof Francis Petersen, said the university has an important responsibility to generate knowledge that will impact society positively.

“We have a role to work closely with our schools and society so that we can understand each other’s needs,” he said.

“We need to strengthen collaboration with all our partners so that we can travel further and make an impact in our society,” said Prof Petersen.

One of the participating teachers in the S4F programme, Grace Molante, from a primary school in Zastron, said: “It is programmes such as these that instil hope in us as teachers. Some learners could find Maths and Science very difficult and challenging subjects, but this programme makes problem solving more enjoyable and practical.”

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept