Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 September 2019 | Story Zamuxolo Feni | Photo Liza Crawley
Read More Photo SANRAL
SANRAL Chief Executive Officer Skhumbuzo Macozoma and UFS Rector and Vice-Chancellor Prof Francis Petersen cutting a cake to mark 10 years of collaboration between the two institutions.

The Science-for-the-Future (S4F) programme is fundamental to generating the required pipeline for technologically skilled entrepreneurs and workers by focusing on Mathematics and Science support to learners, teachers, and parents.

This is according to the South African National Roads Agency Limited (SANRAL) Chief Executive Officer, Skhumbuzo Macozoma, who delivered a keynote address at the Annual Science for the Future Summit held at the University of the Free State (UFS) on 20 September.

The S4F is a partnership between the UFS and SANRAL, with the fundamental purpose to train Maths and Science teachers and to support learners and parents. The programme has now been extended to six other universities, namely Nelson Mandela University and Walter Sisulu University in the Eastern Cape; the University of Limpopo, University of KwaZulu-Natal, and the two recently established universities, the University of Mpumalanga and the Sol Plaatje University in the Northern Cape.

Dr Cobus van Breda, the Programme Director for the UFS S4S, said they developed the Family Math and Key Concepts in Science programmes to address issues that prevent learners from excelling in these critical subjects. It seeks to improve the content knowledge of teachers and provide them with more skills-teaching resources.

Macozoma said: “I am proud and deeply honoured to stand before you today in the strength of a successful 10-year partnership with the University of the Free State which we are celebrating here today, together with the hosting of the Annual Science for the Future Summit.”  More than 300 teachers attended the summit.

Planning for the future

He indicated that SANRAL's long-term strategy, Horizon 2030, instructed the development of a new human-resources strategy for the organisation, which has identified three pillars that underpin SANRAL's human-capital development initiatives, namely people, skills, and performance.

“The strategic opportunities identified by SANRAL include capitalising on the opportunity presented by the digital revolution to create a new generation of technologically skilled entrepreneurs and workers; returning to good and ethical governance in both the public and private sectors; bringing back the prestige of serving the citizens of SA through state institutions: fashioning SANRAL as an employer of the future and delivering technical skills to address the glaring skills gap in engineering and other domains,” he said.

Macozoma stated that SANRAL has also decided to review and rationalise its support to institutions of higher learning in order to grow the footprint of its support programmes, increase the impact, and ensure equity.

Beyond this, he stated that SANRAL wanted to ensure that learners are equipped with fundamental competencies that are essential to complement academic teachings, including critical thinking, creativity, collaboration, communication, information literacy, media literacy, technology literacy, and flexibility.         

Facing 4IR head on

Macozoma said the most important characteristics of the Fourth Industrial Revolution that must be taken into consideration by those who aim to survive it, drive it, and benefit from it, is a smart customer – who is informed and dictates what services he/she wants and how they should be delivered; technology at the fingertips – which will enable rapid, real-time, borderless services to information, services, and technology as an enabler – bringing efficiency to logistics, mobility, medicine, education, industries, the economy, the military, global trade, and politics.  

Working closely with school and society

UFS Rector and Vice-Chancellor, Prof Francis Petersen, said the university has an important responsibility to generate knowledge that will impact society positively.

“We have a role to work closely with our schools and society so that we can understand each other’s needs,” he said.

“We need to strengthen collaboration with all our partners so that we can travel further and make an impact in our society,” said Prof Petersen.

One of the participating teachers in the S4F programme, Grace Molante, from a primary school in Zastron, said: “It is programmes such as these that instil hope in us as teachers. Some learners could find Maths and Science very difficult and challenging subjects, but this programme makes problem solving more enjoyable and practical.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept