Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 September 2019 | Story Ruan Bruwer | Photo Supplied
Kovsies Women Cross-Country Team Marné Mentz, Vicky Oelofse, and Channah du Plessis
Marné Mentz, Ts’epang Sello, and Tyler Beling played a huge role in Kovsies' cross-country champions win.

After coming within a whisker of claiming the title in 2018, the University of the Free State’s (UFS) runners ensured that the University Sports South Africa (USSA) cross-country trophy comes to Bloemfontein in 2019.

Kovsies are the new national student cross-country champions after they (men and women combined) won the USSA Championships in Nelspruit on Saturday, 21 September. Kovsies and the University of Johannesburg (UJ) both finished with three gold medals at the same event in 2018. UJ finished with nine overall medals compared to the eight (three gold, two silver, and three silver) of the UFS, who had to settle for second place. In 2017, the UFS finished third.

The Kovsie women’s team played a huge role in carrying the team to the top of the medal table, winning four golds. They won the 4 km and 10 km women’s team competitions as well as the road relay. The top three places by the runners of a university determined the team winner.

Marné Mentz UFS Cross-Country

Marné Mentz’s gold medal in the four-kilometre race at the
USSA Cross Country Championships helped the Kovsies
win the overall title.

Marné Mentz (first), Vicky Oelofse (fifth), and Channah du Plessis (sixth) dominated the four-kilometre race. In the 10 km, Ts’epang Sello (third), Tyler Beling (sixth), and Lizandré Mulder (seventh) did enough to ensure another gold for the Free State students. Mentz, Sello, and Beling jointly took first place in the road relay.

In the 10-km race for men, Kovsies came fifth, with Victor Makhabesela the best performer (finishing ninth). Pakiso Mthembu, one of the contenders for the medal who won the silver medal at the National Cross Country Championships two weeks before, had to withdraw after 7 km in the race due to an injury.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept