Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 September 2019 | Story Rulanzen Martin | Photo Stefan Els
Run to Stellenbosch run
The baton #hope took centre stage at the welcoming ceremony of the #UFSRun4MentalHealth team at Coetzenburg stadium in Stellenbosch on 25 September 2019. Pictured here from the left; Susan van Jaarsveld, Burneline Kaars, Arina Engelbrecht and Tertia de Bruin.

The #UFSRun4MentalHealth awareness runners arrived in Stellenbosch on 25 September 2019.

The 21-member team from the Faculty of Health Sciences and Organisational Development and Employee Wellness at the University of the Free State (UFS) had a send-off ceremony on the Bloemfontein Campus on 20 September 2019, on their running journey to Stellenbosch University (SU) to raise awareness for #MentalHealth. The teams ran a distance of 1 075 km at an average speed of 10.03 km/h or a pace of 5 minutes and 59 seconds per km.

"At last, the team has arrived. I am extremely proud of all the runners and I think they have touched many lives, and I think it was a wonderful experience. On behalf of the University of the Free State, welcome to Stellenbosch!," said Susan van Jaarsveld; Senior Director: UFS Human Resources

"We ran 1 075 kilometres from Bloemfontein to Stellenbosch. Yes, we did have some challenges along the road. There were some steeps that were too heavy, and the wind, the dryness, and some gravel roads that we went through. But, because of the team spirit and the inspiration that we maintained during our challenge, we did very well until we got to Stellenbosch this morning," said red team member, Diphate Dimo from the university's Facilities Management. 


Read more:
#UFSRun4MentalHealth: 973 km down, 100 km to go
First #MentalHealth awareness run to Stellenbosch to bring hope
MENTAL HEALTH: It affects all of us
Guardians of Mental Health
#KovsiesCare: HR prioritises mental health in the workplace



News Archive

Dr Abdon Atangana cements his research globally by solving fractional calculus problem
2014-12-03

 

Dr Abdon Atangana

To publish 29 papers in respected international journals – and all of that in one year – is no mean feat. Postdoctoral researcher Abdon Atangana at the Institute for Groundwater Studies at the University of the Free State (UFS) reached this mark by October 2014, shortly before his 29th birthday.

His latest paper, ‘Modelling the Advancement of the Impurities and the Melted Oxygen concentration within the Scope of Fractional Calculus’, has been accepted for publication by the International Journal of Non-Linear Mechanics.

In previously-published research he solved a problem in the field of fractional calculus by introducing a fractional derivative called ‘Beta-derivative’ and its anti-derivative called ‘Atangana-Beta integral’, thereby cementing his research in this field.

Dr Atangana, originally from Cameroon, received his PhD in Geohydrology at the UFS in 2013. His research interests include:
• the theory of fractional calculus;
• modelling real world problems with fractional order derivatives;
• applications of fractional calculus;
• analytical methods for partial differential equations;
• analytical methods for ordinary differential equations;
• numerical methods for partial and ordinary differential equations; and
• iterative methods and uncertainties modelling.

Dr Atangana says that, “Applied mathematics can be regarded as the bridge between theory and practice. The use of mathematical tools for solving real world problems is as old as creation itself. As written in the book Genesis ‘And God saw the light, that it was good; and divided the light from the darkness’, the word division appears here as the well-known method of separation of variables, this method is usually employed to solve a class of linear partial differential equations”.

“A mathematical model is a depiction of a system using mathematical concepts and language. The procedure of developing a mathematical model is termed mathematical modelling. Mathematical models are used not only in natural sciences, but also in social sciences such as economics, psychology, sociology and political sciences. These models help to explain systems and to study the effects of different components, and to make predictions about behaviours.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept